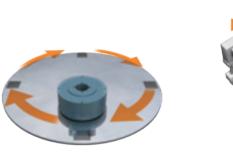


DIRECT DRIVE ACTUATOR PRODUCTS CATALOG ABSODEX General Catalog

There is a reason why people choose us

A broad lineup of ABSODEX selectable according to applications/purposes



All actuators are absolute types

3 user friendly features of ABSODEX

Flexible Operation

With an abundant programming function realize the operation that you want.

Indexing operation

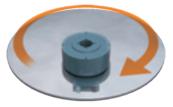
Oscillations

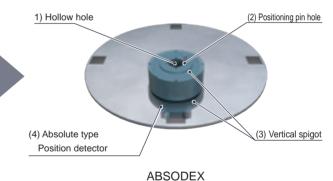
Reduce Workload and Save Space

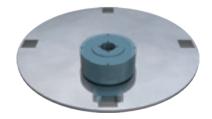
A simple design with 4 standard useful features.

Motor + Timing belt

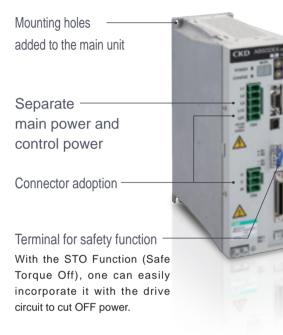
High reliability & maintenance-free


No more damaged or worn gears from a gearless design.


Concern for gear damage or friction



Continuous rotation


No worries Gearless structure

Compatibility

Freely combine compatible drivers and actuators

TS/TH driver

(AX1000T, 2000T, 4000T)

For the IoT of equipment!

- Monitor function (TS/TH wiresaving serial communication)
- Network operation mode (TS/TH wiresaving serial communication)
 - ➡ Flexible positioning to any point
 - ➡ Freely program and change parameters with the Network Operation mode

MU driver

(AX6000M)

24 VDC adopted for power supply Realized smaller dimensions.

Great usability!

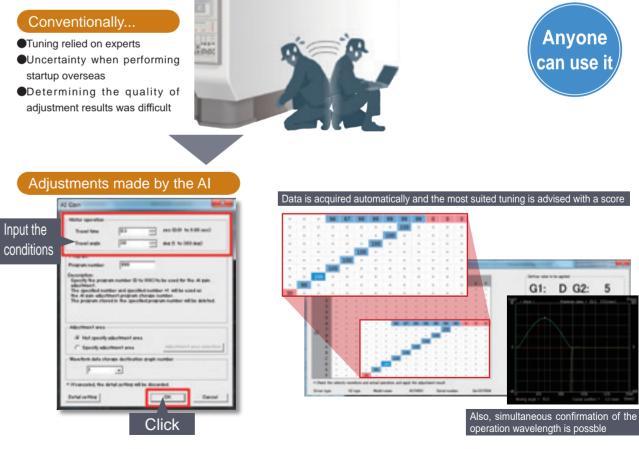
- No need of backup battery for holding absolute position
- Freely combine compatible drivers and actuators

Convenient functions that suit many applications

- Various functions for your usage!
- Segment position output function

Operation made easier The AxTools is here to help you

from operation settings to adjustments.


AX Tools is **Easier than ever** to use for both first-time and experienced users.

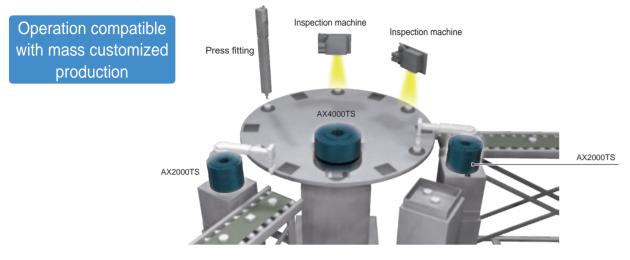
Intuitive operation with a simple and easy to use interface.

Desired conditions can be instantly implemented.

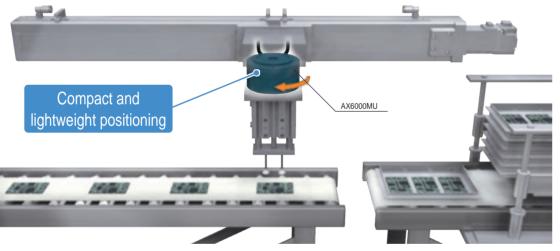
Industry's first! Equipped with an AI that Supports adjustments

No. Description	Setting value
1 Home position	Dise Use
2 Home positioning rotation direction	easil
3 Home positioning speed	
4 Shift amount of home	P 1 Decree
5 Number of segment	4 +
6 Movement time	1 ± sec
7 Direction of turn	Dperate with c
8 Processing after stop	1Start
9 DWELL	Veloci
10 Brake	2Not u

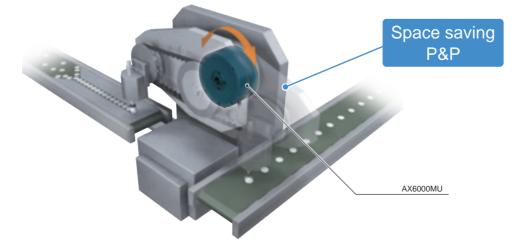
In equal segmental programming, only the number of partitions and travel times need to be input.



Case Study


Assembly, Inspection Machines

Conduct setup changes without time loss


Electronic substrate conveyor

Rotate electronic substrates by 90°

Pick and place device

Work is conveyed using an equipped parallel displacement mechanism.

Compact and easy to use **AX6000M** Series

Industry's smallest and lightest!

*As of October 2016, CKD research

Compatible with a Wide range of Needs AX1000T/AX2000T/AX4000T Series

AX9000TS/TH Series

AX1000T Series

- 5 sizes lined up from 22 to 210 N·m
- Improved indexing accuracy and deflection of shaft/surface, allowing for precise positioning

Most suited for

Precision measurements Inspection machines Assembly machines

AX2000T Series

- 3 sizes lined up from 6 to 18 N·m
- High speed operation, compact design

Most suited for

Pick&Place Turn tables Assembly machines

AX4000T Series

- 8 sizes lined up from 9 to 1000 N·m
- Wide selection, supporting large inertial loads

Most suited for

Pick and Place Turn tables Inspection machines Assembly machines

Safety Standards

Safety Standard Certification compatible (Safe Torque Off function)

International Standards

Compliant with UL/cUL (N.A. standards) and CE (European standards)

Support for domestic and international networks

Ideal for the IoT of equipment!!

Abundant monitoring functions

The current status of ABSODEX can be monitored with extensive monitoring functions such as current position, speed, electronic thermal value, and alarm. Monitor function also available for preventive maintenance!


- Torque load factor: Monitors current torque load factor.
- · Acceleration: Monitors current acceleration status.

Network operation mode (Direct value mode) added! The network operation mode allows flexible positioning from the host controller to any position.

CC-Link	CC-Link is a registered trademark of Mitsubishi Elec
PROFIBUS	PROFIBUS is a trademark of PROFIBUS User Orga
DeviceNet [™] D	eviceNet [™] is a registered trademark of ODVA.
EtherCAT®	EtherCAT® is a patented technology, licensed by Be
EtherNet/IP®	EtherNet/IP® is a registered trademark of ODVA.

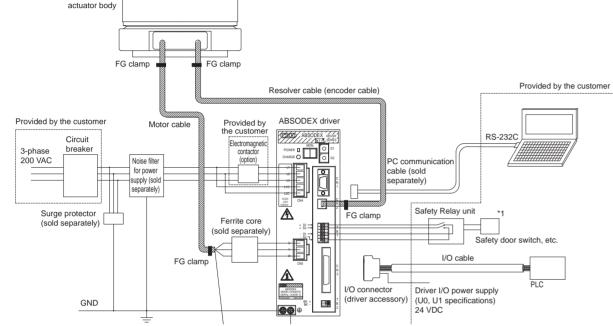
CC-Link DeviceNet Ether Ether Ether CAT Ether Net/IP

ectric Corporation. anization.

Beckhoff Automation GmbH in Germany

System configuration

AX1000T/2000T/4000T


System configuration

- Basic setting items
- 1. Input a program from a PC or the dialog terminal.
- 2. Set necessary parameters in the same way.
- 3. Set the appropriate gain.

ABSODEX

Basic driving methods

- 1. Select a program to execute from PLC.
- 2. Input the start signal from the PLC.
- 3. After indexing is started, the driver outputs a positioning completion signal.

To comply with the CE marking, the parts shown below or overcurrent/short circuit protection Component is required. In addition, the driver must be installed within the switchboard. For details on the selection, installation and wiring methods of these components, refer to the instruction manual or technical data (ABSODEX AX series TS/TH type technical data).

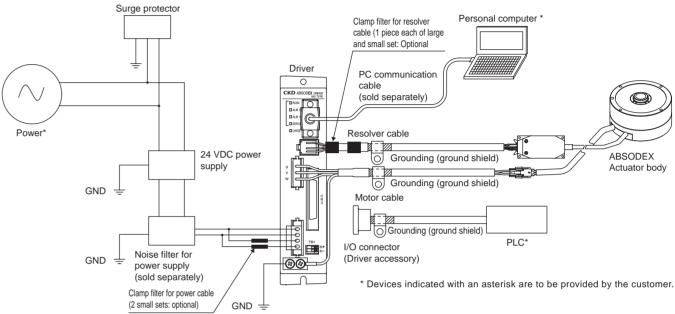
*2	Part name	Application	Model No.	Manufacturer	
-	Noise filter	Three-phase/single-phase 200 to 230 VAC	3SUP-EF10-ER-6	Okaya Electric Industries Co., Ltd.	
	Noise liiter	Single-phase 100 to 115 VAC	NF2015A-OD	Soshin Electric Co., Ltd.	
	Ferrite core	Common	RC5060ZZ	Soshin Electric Co., Ltd.	
	Surgo protoctor	Common	RSPD-250-U4	Okaya Electric Industries Co., Ltd.	
	Surge protector	Common	LT-C32G801WS	Soshin Electric Co., Ltd.	
	FG clamp ^{*1}	Common	FGC-5,FGC-8	Kitagawa Industries Co.,Ltd.	

*1) Use an FG clamp with a motor cable and resolverUsed to ground the shield of cable (encoder cable). *2) Parts available for purchase from CKD Refer to the ABSODEX related parts model No. table (page 51).

Configuration (when set model No. is selected)

	Name	Quantity
ard g.	Actuator	1
Standard config.	Driver (with controller)	1
Stal co	1 each	
	Accessories: I/O connector, connector for power supply, connector for n	notor cable

Programming tool


- Dialog terminal "AX0180" is available
- The "AX Tools" configuration tool is available. ABSODEX programs are created, parameters set, and operation commands, etc., issued from the PC. The created program can be saved. The PC communication cable (model No.: AX-RS232C-9P) is required.

Note)For the notes on the connection method, make sure to read the instruction manual (technical data)

Note)For details, refer to the accessories supplied with the driver on page 45 (for AX9000TS/AX9000TH).

- Note) The PC communication cable is designed specifically for ABSODEX. You cannot use a commercially available cable as it is. If used by mistake, the driver and PC may become damaged. Note) Connect the dialog terminal and PC when adjusting
- only. During normal operation, disconnect the computer communication cable from CN1.
- Note) When the PC recovers from the sleep mode, the USB-serial conversion cable may not be recognized, leading to communication errors.
- * Please download and use the latest version of the setting tool "AX Tools" from our website

- Basic setting items
- 1. Input the program from the PC.
- 2. Set the required parameters.
- 3. Set the appropriate gain.

Configuration (when set model No. is selected)

Name	Quantity
Actuator	1
Driver (with controller)	1
Motor cable and resolver cable	1 each

Included accessories: I/O connector, power supply connector, and open tool for power supply connector

Note) For details, refer to the accessories supplied with the driver in page 7. Note) The connectors for motor cable come with the motor cable Note) For the notes on the connection method, make sure to read the

instruction manual (technical data) before use

Programming tool

• The "AX Tools" configuration tool is available. (Windows version, free of charge) ABSODEX programs are created, parameters set, and

operation commands, etc., issued from the PC.

The created program can be saved.

The PC communication cable (model No.: AX-RS232C-9P) is required. Note) The PC communication cable is designed specifically for ABSODEX. You cannot use a

commercially available cable as it is. If used by mistake, the driver and PC may become damaged. Note) Connect the computer communication cable only

when performing adjustments. During normal operation, disconnect the computer communication cable from CN1.

- Basic driving methods
- 1. Select a program to be executed from the PLC.
- 2. The start signal is input from the PLC.
- 3. After the drive operation, the positioning completion signal is output from the driver.

To comply with CE marking, the parts listed in the table below are required. For details on the installation and wiring method, refer to the instruction manual or technical data (ABSODEX MU type technical data).

Specification parts	Model No.	Manufacturer
Noise filter	NF2015A-OD *1)	Soshin Electric Co., Ltd.
Surge protector	R/A/V-781BWZ-4 RSPD-250-Q4 RSPD-250-U4	OKAYA ELECTRIC INDUSTRIES CO., LTD.
	LT-C32G801WS	Soshin Electric Co., Ltd.
FG clamp	FGC-5, FGC-8	Kitagawa Industries Co.,Ltd.
Clamp filter for power cable (set of 2 pieces/small)	ZCAT2035-0930A	ТDК
Clamp filter set for resolver cable	ZCAT2035-0930A ZCAT3035-1330	ТDК

Note 1) This product is specified for use with 250 VAC. It can also be used with 24 VDC.

Note) When the computer resumes from sleep state, the USB-serial conversion cable may not be recognized, causing communication errors to occur. Note) Please download and use the latest version of the setting tool "AX Tools" from our website.

ABSODEX system table

								То	rque (N	·m)					
Type	Actuator Series	1.2	3	6	9	12	18	22	45	75	150	210	300	500	1000
Compact	AX6000M Series	AX6001 MU	AX6003 MU												
	AX1000T Series (compact/ middle)							AX1022T	AX1045T	AX1075T					
	AX1000T Series (large)										AX1150T	AX1210T			
High response type	AX2000T Series			AX2006T		AX2012T	AX2018T								
	AX4000T Series (compact/ medium)				AX4009T			AX4022T	AX4045T	AX4075T					
	AX4000T Series (large)										AX4150T		AX4300T	AX4500T	AX410WT

Indexing	Repeat	Surface runout	Shaft runout		ver series na				
Accuracy (sec)	Accuracy (sec)	(mm)	(mm)	TS	Ĩ	MU	Features	Applications	Liste page
±90	±10	0.03	0.05			•	●Small diameter (ø80)	●P&P ●Sub table	1
±15	±5	0.01	0.01	•				 Precision measurement Turntable Inspection 	11
±15	±5	0.01	0.01		•		runout accuracy)	machine Assembling machine	
±30	±5	0.03	0.03	•			Compact with small	●P&P ●Turntable ●Assembling machine	17
±30	±5	0.03	0.05	•			Supports large moments of inertia load	 Turntable Inspection machine 	21
±30	±5	0.03	0.05 (0.08)*1		•		diameter and a variety of size options	●Assembling machine ●P&P	29

*1 AX410WT

Model selectionPage 53 ASafety precautions......Page 61

Actuator AX6000M

Drivers AX9000MU

Actuator AX 1000T

Actuator AX2000T

Actuator AX4000T

Drivers AX9000TS/TH

Dialog terminal Related parts AX0180 model No. tabl

Characteristics of the driver

Drivers can be commonly used for supported actuators. The controller function allows you to use an NC program to desirably set the actuator's rotation angle, movement time, timer, etc. M code output, encoder output, etc., are also available to connect to an external PLC, motion controller, etc.

CKD Intro 4

ABSODEX

AX6000M Series

Minimum size of 80 mm diameter

Compatible function allows free combination of driver, actuator, and cable

- Max. torque: 1.2, 3 N·m
- Supported driver: MU driver

Actuator specifications

Actuator X6000N

Drivers AX9000MU

Actuator AX1000T

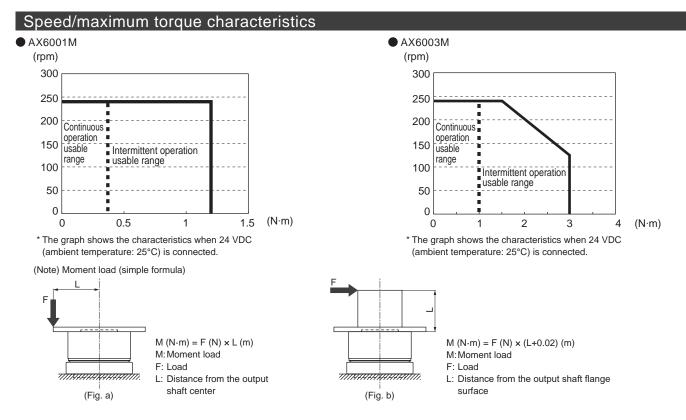
Actuator AX2000T

Actuator AX4000T

Drivers AX9000TS/TH

Dialog terminal AX0180

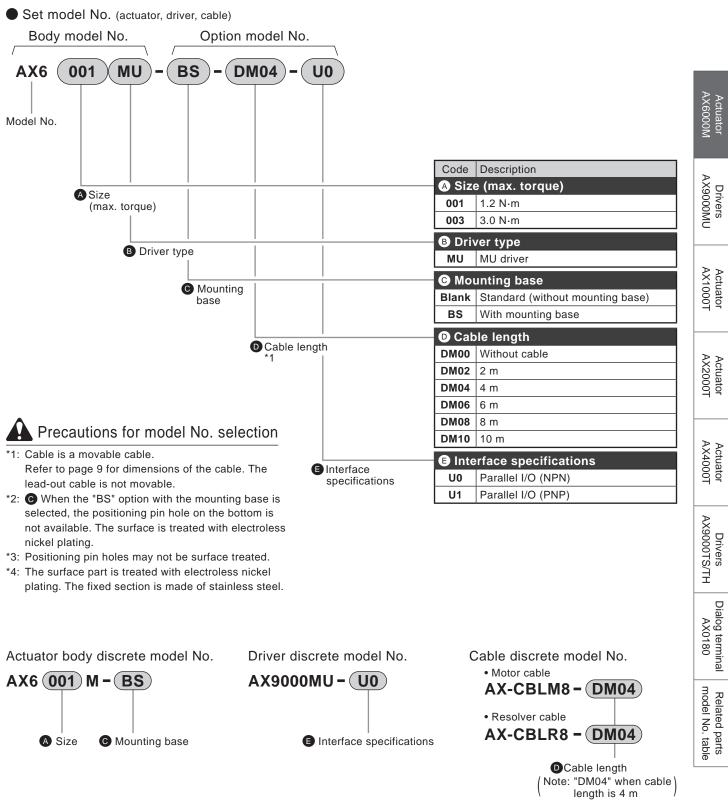
model No. table


Related parts

Item		AX6001M	AX6003M
Max. output torque	N∙m	1.2	3.0
Continuous output torque	N∙m	0.4	1.0
Max. rotation speed	rpm	240	(*1)
Allowable axial load	N	60	00
Allowable moment load	N∙m	ł	5
Output shaft moment of inertia	kg∙m²	0.00034	0.00059
Allowable moment of load inertia	kg∙m²	0.034	0.059
Index accuracy (*3)	sec	±	90
Repeatability (*3)	sec	±	10
Output shaft friction torque	N∙m	0.13	0.22
Resolution	P/rev	540	672
Motor insulation class		Clas	ss A
Motor withstand voltage		550 VAC	1 minute
Motor insulation resistance		10 MΩ or mo	re 500 VDC
Operating ambient temperature		0 to -	40°C
Operating ambient humidity		20 to 85% RH, r	no condensation
Storage ambient temperature		-10 to	65°C
Storage ambient humidity		20 to 90% RH, r	no condensation
Atmosphere		No corrosive gas, ex	xplosive gas, or dust
Weight	kg	1.2 (1.4) *2	1.8 (2.0) *2
Output shaft runout (*3)	mm	0.	03
Output shaft surface runout (*3)	mm	0.	05
Degree of protection		IP	20

*1: Use at a speed of 80 rpm or less during continuous rotation operation.

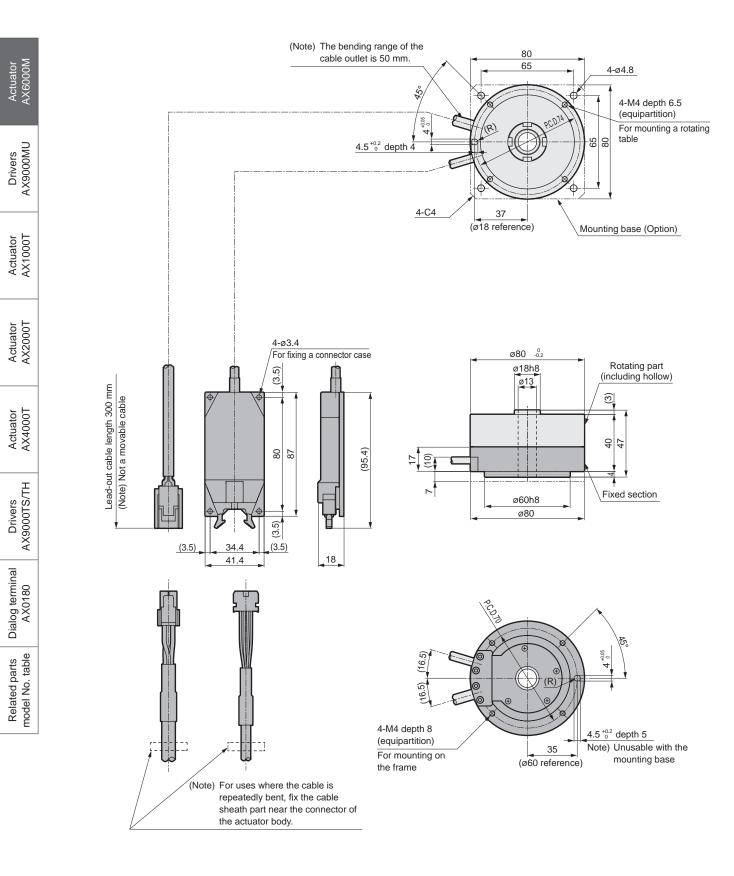
*2: The values in () are the actuator weight with the mounting base option.


*3: Refer to the "Glossary" on page 52 for index accuracy, repeatability, output shaft runout and output shaft surface runout.

Always read the safety precautions on pages 61 to 66 before use.

AX6000M Series How to order

How to order

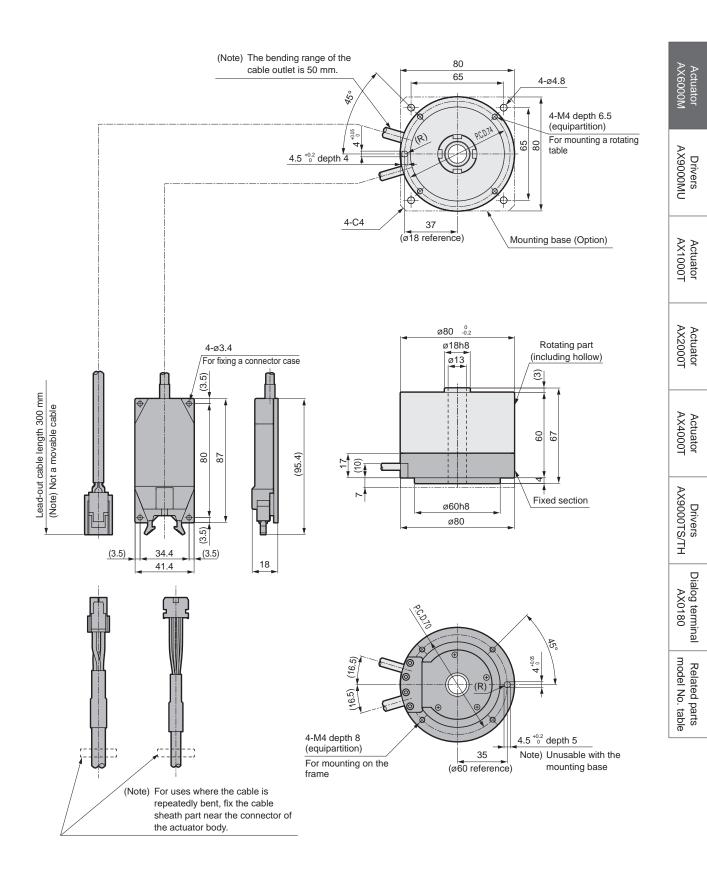


Custom order products are CE and RoHS non-compliant. Contact CKD as needed.

AX6000M Series

Dimensions

AX6001M


*1) The origin position of the actuator may differ from that shown in the dimensions. The origin offset function allows you to set a desired origin position.

AX6000M Series

Dimensions

Dimensions

AX6003M

*1) The origin position of the actuator may differ from that shown in the dimensions. The origin offset function allows you to set a desired origin position.

ABSODEX (AX6000M Series)

MU driver

Interface specifications: Parallel I/O (NPN) Parallel I/O (PNP)

Actuator AX6000M

Drivers AX9000MU

Actuator AX1000T

Actuator AX2000T

Actuator AX4000T

Drivers AX9000TS/TH

Dialog terminal AX0180

Related parts model No. table

Ultra-compact/lighter weight (resin body adopted)

Features

Easy wiring with connector

How to order

AX9000MU - U0 AX9000MU - U1

Interface specifications – U0: Parallel I/O (NPN) U1: Parallel I/O (PNP)

General sp	ecifications
------------	--------------

		Model			
	Item	MU driver AX9000MU			
Power supply	Main power supply	24 VDC ±10%			
voltage	Control power	24 VDC ±10%			
Structure		Driver and controller integrated			
Operating ambient temperature		0 to 50°C			
Operating ambient humidity		20 to 90% RH (no condensation)			
Storage ambient temperature		−10 to 65°C			
Storage a	ambient humidity	20 to 90% RH (no condensation)			
Atmosp	here	No corrosive gas or dust			
Anti-noise		1000 V (P-P), pulse width 1 µsec, rising, falling time 1 nsec impulse noise test, induction noise (capacitive coupling)			
Vibration resistance		4.9 m/s ²			
Weight		Approx. 0.5 kg			
Degree	of protection	IP2X			

Performance specifications

ltem	Description
Item	Description
No. of control axes	1 axis, 540,672 pulses/1 rotation
Angle setting unit	° (degree), pulse, indexing No.
Angle min. setting unit	0.001°, 1 pulse
Speed setting unit	sec, rpm
Speed setting range	0.01 to 100 sec/0.11 to 240 rpm
Equal divisions	1 to 255
Max. command value	7-digit numeric input ±9,999,999 pulse
Timer	0.01 sec to 99.99 sec
Programming language	NC
Programming method	Set data through RS-232C port with a PC.
Operation	Auto, MDI, jog, single block, servo OFF,
mode	pulse train input mode
Coordinates	Absolute, incremental
Acceleration curve	[5 types] Modified Sine (MS), Modified Constant Velocity (MC/MC2), Modified Trapezoid (MT), Trapecloid (TR)
	RUN: Normal operating state
	ALM2: Alarm 2 state
Status display	ALM1: Alarm 1 state
	SERVO: Servo state
	CHARGE: Charge state
Communication interface	RS-232C compliant
I/O signal	Refer to interface specification pages.
Program capacity	Approx. 6,000 characters (256)
Electronic thermal	Overheating protection for actuator

Power capacity

Actuator model No.	Driver model No.	Rated input current	Max. input current
AX6001M, AX6003M	AX9000MU	3.3 A	10 A

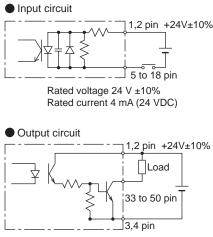
Always read the safety precautions on pages 61 to 66 before use. Custom order products are CE and RoHS non-compliant. Contact CKD as needed.

Parallel I/O (NPN)

CN3 Input signal

Pin No.	Signal name	Logic	Determination
1 to 2	External power supply input +24 V ±10%		
3 to 4	External power supply input GND		
5	Program No. selection input (Bit 0)	Positive	Level
6	Program No. selection input (Bit 1)	Positive	Level
7	Program No. selection input (Bit 2)	Positive	Level
8	Program No. selection input (Bit 3)	Positive	Level
9	Program No. setting 2nd digit input/	Positive	Edge
9	Program No. selection input (Bit 4)	POSITIVE	Level
10	Program No. setting 1st digit input/	Positive	Edge
10	Program No. selection input (Bit 5)	FUSITIVE	Level
11	Reset input	Positive	Edge
12	Origin return directive input	Positive	Edge
13	Start input	Positive	Edge
1.4	Corris on input/Drogrom stop input	Positive	Level
14	Servo on input/Program stop input	Positive	Edge
15	Continuous rotation stop input	Positive	Edge
16	Answer input/Position deviation counter reset input	Positive	Edge
17	Emergency stop input	Negative	Level
18	Brake release input	Positive	Level

CN3 pulse train input signal

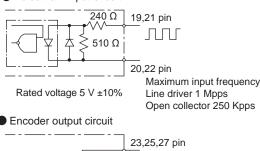

Pin No.	Signal name	
19	PULSE/UP/A phase	
20	-PULSE/-UP/-A phase	
21	DIR/ DOWN/ B phase	
22	-DIR/-DOWN/-B phase	

Input/output circuit specifications

Description	1 circuit current (mA)	Max. points (Circuit)	Max. current (mA)	Max. power consumption (mA)
Input circuit	4	14	56	
Output circuit	30	18	540	746
Brake output (BK+, BK-)	75	2	150	

* The maximum simultaneous output points of the output circuit are 14 points out of 18 points.

CN3 input/output circuit specifications


Rated voltage 24 V ±10% Rated current 30 mA (MAX) CN3 Output signal

Pin No.	Signal name	Logic
33	M code output (Bit 0)	Positive
34	M code output (Bit 1)	Positive
35	M code output (Bit 2)	Positive
36	M code output (Bit 3)	Positive
37	M code output (Bit 4)	Positive
38	M code output (Bit 5)	Positive
39	M code output (Bit 6)	Positive
40	M code output (Bit 7)	Positive
41	Imposition output	Positive
42	Positioning completion output	Positive
43	Start input wait output	Positive
44	Alarm output 1	Negative
45	Alarm output 2	Negative
46	Output 1 during indexing/Origin position output	Positive
47	Output 2 during indexing/Servo state output	Positive
48	Ready output	Positive
49	Segment position strobe output	Positive
50	M code strobe output	Positive

CN3 encoder output signal (Incremental)

Pin No.	Signal name	
23	A phase (Line driver output)	
24	-A phase (Line driver output)	
25	B phase (Line driver output)	
26	B phase (Line driver output)	
27	Z phase (Line driver output)	
28	-Z phase (Line driver output)	

Pulse train input circuit

Output format: Line driver Line driver: DS26C31

Actuator AX6000M

Related parts model No. table

6

Always read the safety precautions on pages 61 to 66 before use.

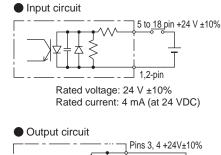
* Custom order products are CE and RoHS non-compliant.

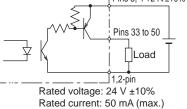
Parallel I/O (PNP)

CN3 input signal

Pin No.	Signal name	Logic	Judgment
1 to 2	External power supply input GND		
3 to 4	External power supply input +24V ±10%		
5	Program No. selection input (bit 0)	Positive	Level
6	Program No. selection input (bit 1)	Positive	Level
7	Program No. selection input (bit 2)	Positive	Level
8	Program No. selection input (bit 3)	Positive	Level
9	Program number setting input 2nd digit/	Positive	Edge
9	Program number selection input (bit 4)	Positive	Level
10	Program number setting input 1st digit/	Positive	Edge
	Program number selection input (bit 5)	Positive	Level
11	Reset input	Positive	Edge
12	Origin position return command input	Positive	Edge
13	Startup input	Positive	Edge
		Positive	Level
14	Servo-on input/ Program stop input		Edge
15	Continuous rotation stop input	Positive	Edge
16	Answer input/Position deviation counter reset input	Positive	Edge
17	Emergency stop input	Negative	Level
18	Brake release input	Positive	Level

CN3 pulse train input signal


Pin No.	Signal name	
19	PULSE/UP/A-phase	
20	-PULSE/-UP/-A-phase	
21	DIR/DOWN/B-phase	
22	-DIR/-DOWN/-B-phase	


I/O circuit specifications

Description	1 circuit current (mA)	Max. number of points (Circuit)	Max. current (mA)	Max. current consumption (mA)
Input circuit	4	14	56	
Output circuit	30	18	540	746
Brake output (BK+, BK-)	75	2	150	

*The maximum simultaneous output points of the output circuit are 18 points out of 14 points.

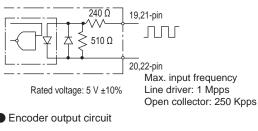
CN3 I/O circuit specifications

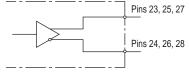
Driver accessory

Dirver ucces	501 y		
Model No.	Specifications	CN3 connector	CN5 connector
AX9000MU-U0	Parallel I/O (NPN)	10150-3000PE (plug) 10350-52A0-008 (shell)	Power supply connector 04JFAT-SBXGGKS-A
AX9000MU-U1	Parallel I/O (PNP)	Sumitomo 3M	Open tool J-FAT-OT J.S.T. Mfg. Co., Ltd.

When ordering additional parts, refer to "How to order".

KD


CN3 output signal


Pin No.	Signal name	Logic
33	M-code output (bit 0)	Positive
34	M-code output (bit 1)	Positive
35	M-code output (bit 2)	Positive
36	M-code output (bit 3)	Positive
37	M-code output (bit 4)	Positive
38	M-code output (bit 5)	Positive
39	M-code output (bit 6)	Positive
40	M-code output (bit 7)	Positive
41	In-position output	Positive
42	Output of positioning completion	Positive
43	Startup input standby output	Positive
44	Alarm output 1	Negative
45	Alarm output 2	Negative
46	Output 1 during indexing/Origin position output	Positive
47	Output 2 during indexing/Servo state output	Positive
48	Ready output	Positive
49	Split position strobe output	Positive
50	M-code strobe output	Positive

CN3 encoder output signal(Incremental)

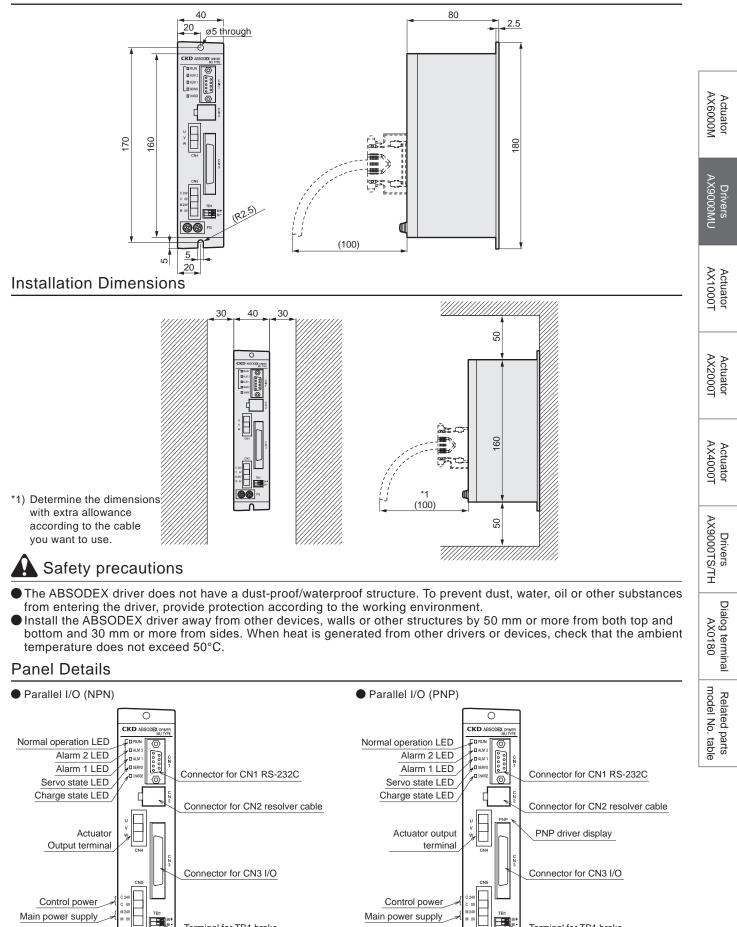
Pin No.	Signal name	
23	A-phase (line driver output)	
24	-A-phase (line driver output)	
25	B-phase (line driver output)	
26	-B-phase (line driver output)	
27	Z-phase (line driver output)	
28	-Z-phase (line driver output)	

Pulse train input circuit

Output format: Line driver Line driver used: DS26C31

Actuator AX6000M

AX9000MU Drivers


Actuator AX1000T

Actuator AX2000T

MU driver

Dimensions/Installation Dimensions/Panel Details

Terminal for TB1 brake

88 **6**9 FG

FG terminal

2 × M4

Terminal for TB1 brake

00 FG

FG terminal

2 × M4

AX6000M Series

Cable Specifications Cable dimensions Product name/model No. Cable's min. bending radius Actuator side Driver side Resolver cable L (Cable length 60 mm (16)Actuator AX6000M AX-CBLR8-DM m (*1) (11.4) (7.1) (29.1) Motor cable 90 mm AX-CBLM8-DM (93) (*1)

*1) \square indicates the cable length.

Safety precautions

- For uses in which the cable is repeatedly bent, fix the cable sheath part near the connector of the actuator body. The lead-out cable of the actuator section is not movable. Make sure to fix the cable in the connector section to prevent the cable from moving. Do not pull the lead-out cable to lift the unit or apply excessive force to the cable. Otherwise, malfunction, sounding of an alarm, damage of the connector part, or disconnection may result.
- When connecting the cable, fully insert the connector. Also, tighten the connector mounting screws and fix screws securely.
- Do not modify the cable, including disconnection or extension. Such modification may cause failure or malfunction.
- For the cable length L, refer to the cable length shown in the How to order.

Drivers

Actuator AX1000T

Actuator AX2000T

ABSODEX AX1000T Series

High accuracy specifications (index accuracy, output shaft runout, etc.) Compatible function allows free combination of driver, actuator, and cable

- Max. torque: 22/45/75/150/210 N·m
- Supported driver: TS/TH driver

Actuator specifications

Item		AX1022T	AX1045T	AX1075T	AX1150T	AX1210T	
Max. output torque	N∙m	22	45	75	150	210	
Continuous output torque	N∙m	7	15	25	50	70	
Max. rotation speed	rpm	240	(*1)	140 (*1)	120 (*1)		
Allowable axial load	N	60	00		2200		
Allowable moment load	N∙m	19	38	70	140	170	
Output shaft moment of inertia	kg∙m²	0.00505	0.00790	0.03660	0.05820	0.09280	
Allowable moment of load inertia	kg∙m²	0.6	0.9	4.0	6.0	10.0	
Index accuracy (*3)	sec			±15	±15		
Repeatability (*3)	sec			±5			
Output shaft friction torque	N∙m	2.	0	8.0			
Resolution	P/rev	540672					
Motor insulation class		Class F					
Motor withstand voltage		1500 VAC 1 min					
Motor insulation resistance		10 MΩ or more 500 VDC					
Operating ambient temperature		0 to 45°C (0 to 40°C: *4)					
Operating ambient humidity		20 to 85% RH, no condensation					
Storage ambient temperature		−20 to 80°C					
Storage ambient humidity		20 to 90% RH, no condensation					
Atmosphere		No corrosive gas, explosive gas, or dust					
Weight	kg	8.9 (10.8) *2	12.0 (13.9) *2	23.0 (27.1) *2	32.0 (36.1) *2	44.0 (48.1) *2	
Output shaft runout (*3)	mm	0.01					
Output shaft surface runout (*3)	mm	0.01					
Degree of protection		IP20					

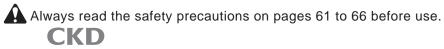
*1: Use at a speed of 80 rpm or less during continuous rotation operation.

*2: The values in () are the actuator weight with the mounting base option.

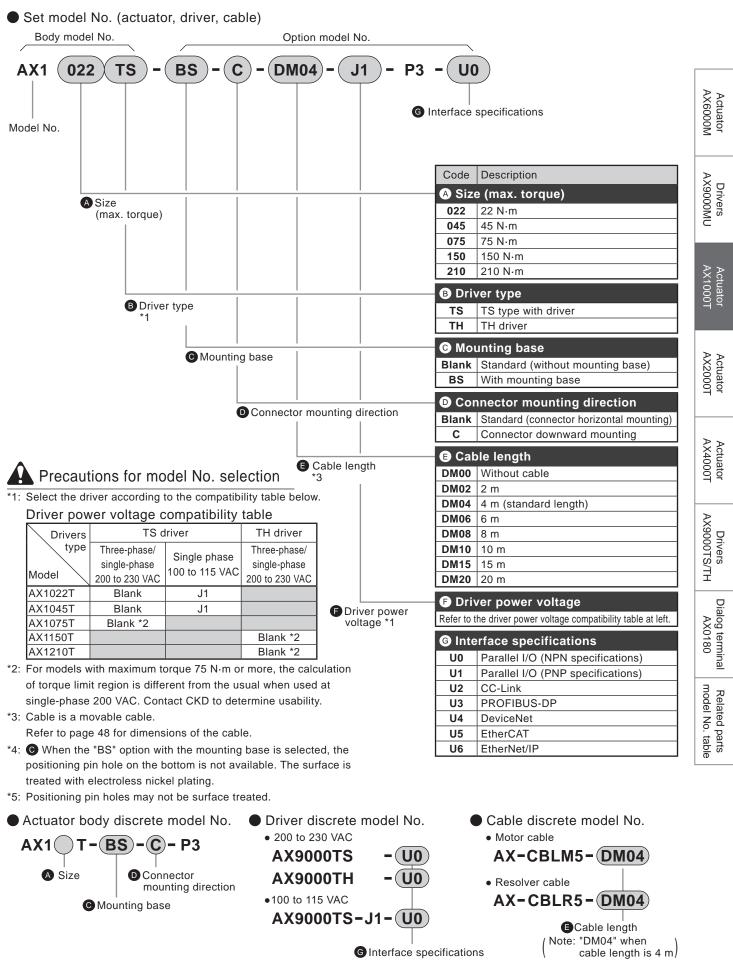
*3: Refer to the "Glossary" on page 52 for index accuracy, repeatability, output shaft runout and output shaft surface runout.

*4: When using as a UL certified product, the maximum temperature is 40°C.

Actuator AX6000M

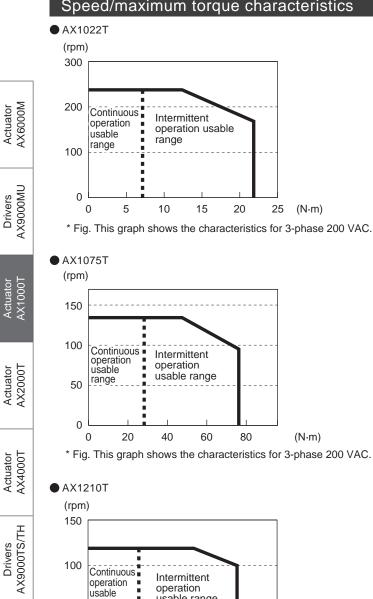

Drivers AX9000MU

Actuato AX1000⁷


Actuator AX2000T

Actuator AX4000T

Drivers AX9000TS/TH



How to order

* Custom order products are CE, UL/cUL, and RoHS non-compliant. Contact CKD as needed.

Speed/maximum torque characteristics

operation

100

usable range

150

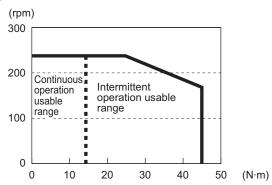
200

* Fig. This graph shows the characteristics for 3-phase 200 VAC.

250

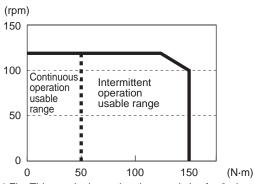
(N·m)

operation

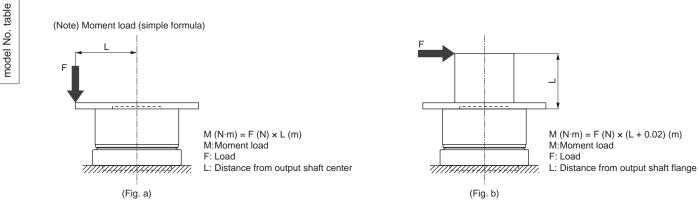

50

usable

range 50


> 0 0

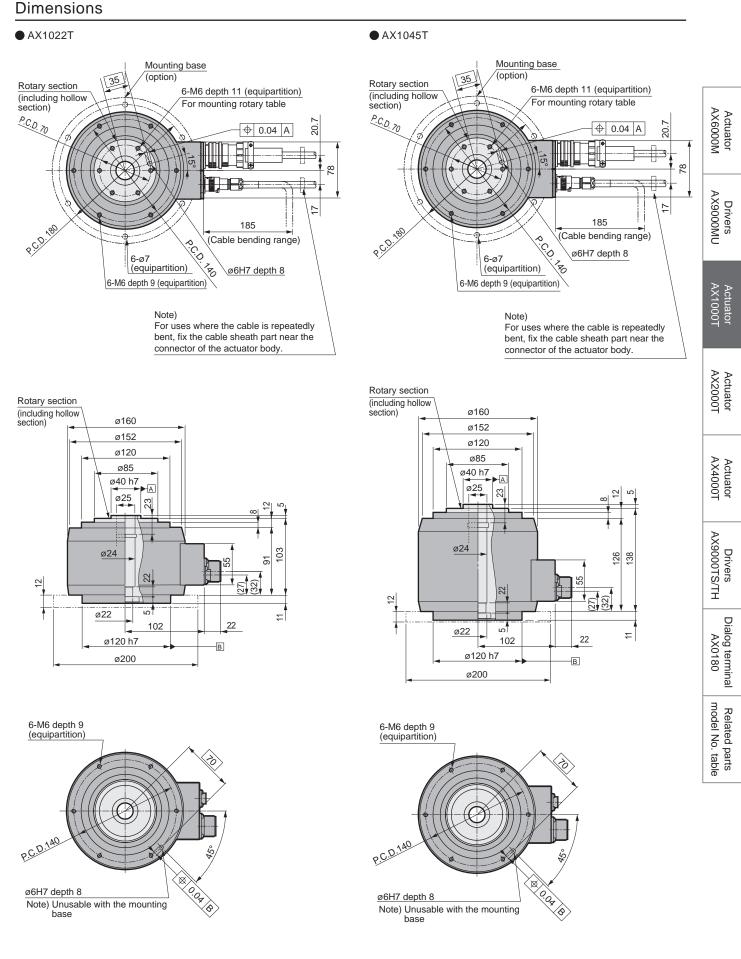
• AX1045T



* Fig. This graph shows the characteristics for 3-phase 200 VAC.

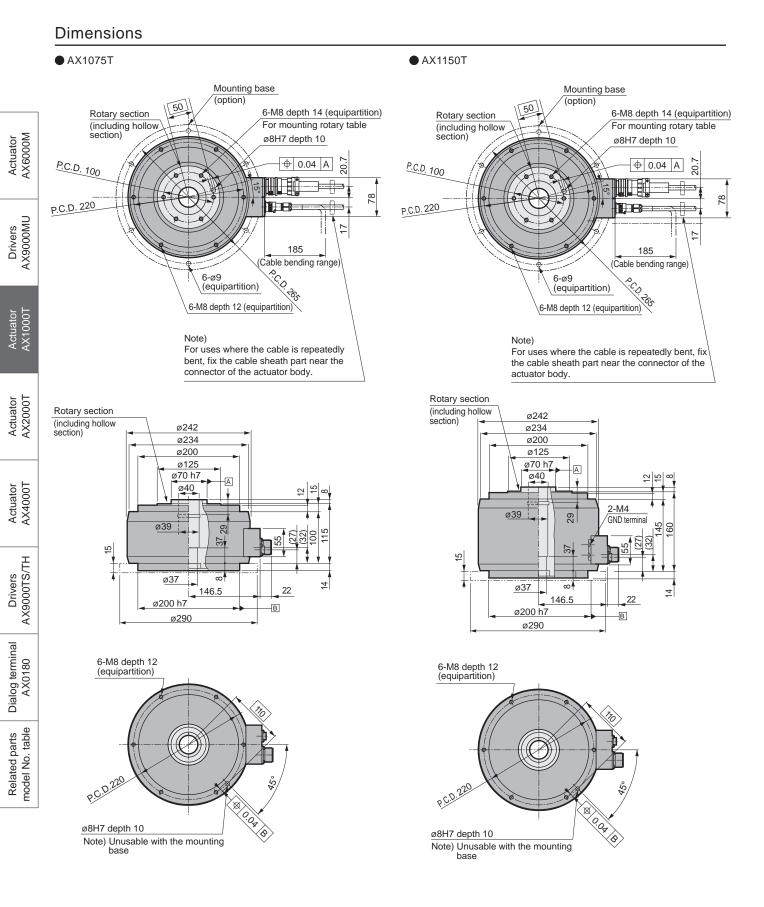
AX1150T

Always read the safety precautions on pages 61 to 66 before use. CKD


13

Actuator

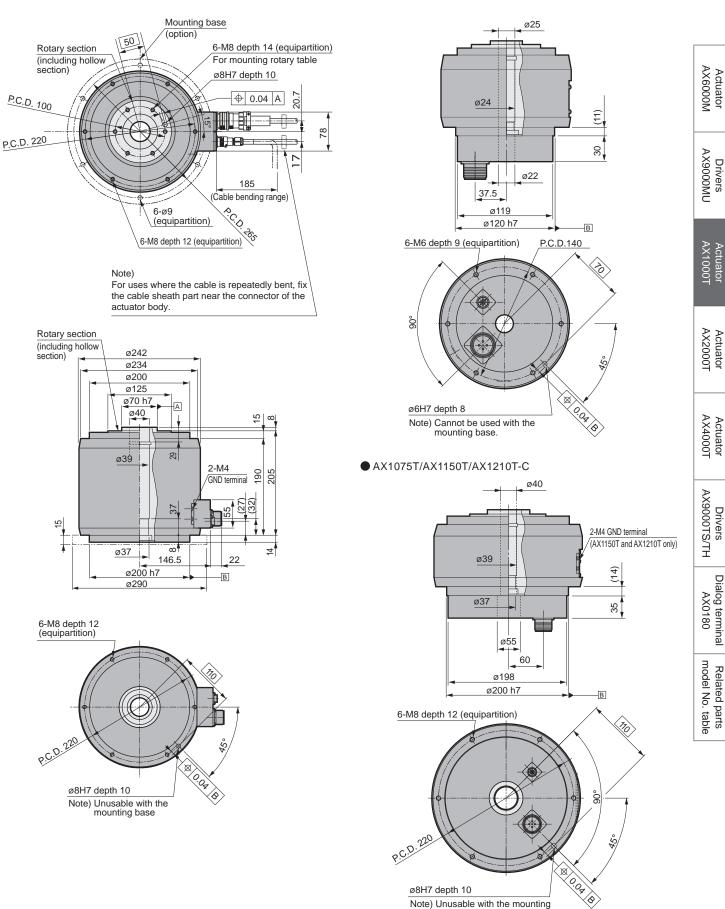
Dialog terminal AX0180


Related parts

Dimensions

*1) The origin position of the actuator may differ from that shown in the dimensions. The origin offset function allows you to set a desired origin position.

14


*1) The origin position of the actuator may differ from that shown in the dimensions.

The origin offset function allows you to set a desired origin position.

Dimensions/Dimensions with options

Dimensions (-C: Connector downward mounting)

AX1022T/AX1045T-C

base

*1) The origin position of the actuator may differ from that shown in the dimensions. The origin offset function allows you to set a desired origin position.

Dimensions

AX1210T

ABSODEX AX2000T Series

High-speed rotation (max. rotation speed 300 rpm), compact with small diameter, large hollow diameter (Ø30)

Compatible function allows free combination of driver, actuator, and cable

- Max. torque: 6/12/18 N·m
- Supported driver: TS driver

Actuator specifications

Actuator AX6000M

Drivers AX9000MU

Actuator AX1000T

Actuator VX2000⁻

Actuator AX4000T

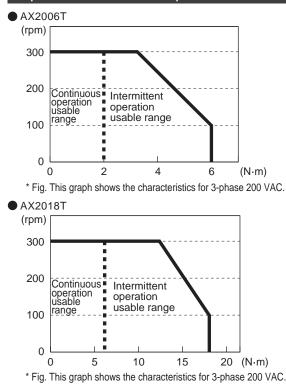
Drivers AX9000TS/TH

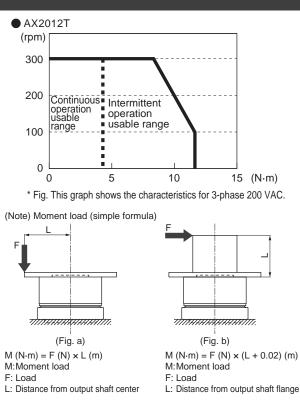
Dialog terminal

AX0180

Related parts model No. table

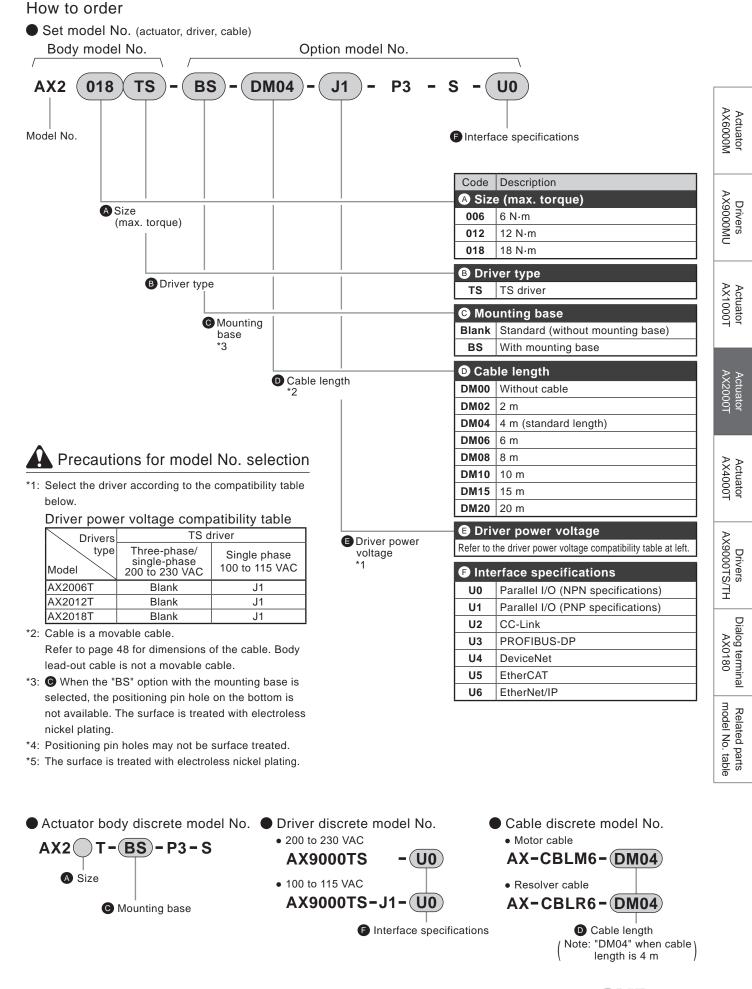
Item		AX2006T	AX2012T	AX2018T		
Max. output torque	N∙m	6	12	18		
Continuous output torque	N∙m	2	4	6		
Max. rotation speed	rpm		300 (*1)			
Allowable axial load	N		1000			
Allowable moment load	N∙m		40			
Output shaft moment of inertia	kg∙m²	0.00575	0.00695	0.00910		
Allowable moment of load inertia	kg∙m²	0.3	0.4	0.5		
Index accuracy (*3)	sec		±30			
Repeatability (*3)	sec		±5			
Output shaft friction torque	N∙m	0	0.6			
Resolution	P/rev	540672				
Motor insulation class		Class F				
Motor withstand voltage		1,500 VAC 1 min				
Motor insulation resistance		10 MΩ or more 500 VDC				
Operating ambient temperature		0 to 45°C (0 to 40°C: *4)				
Operating ambient humidity		20 to 85% RH, no condensation				
Storage ambient temperature		-20 to 80°C				
Storage ambient humidity		20 to 90% RH, no condensation				
Atmosphere		No corrosive gas, explosive gas, or dust				
Weight	kg	4.7 (6.0) *2	5.8 (7.1) *2	7.5 (8.8) *2		
Output shaft runout (*3)	mm	0.03				
Output shaft surface runout (*3)	mm	0.03				
Degree of protection		IP20				

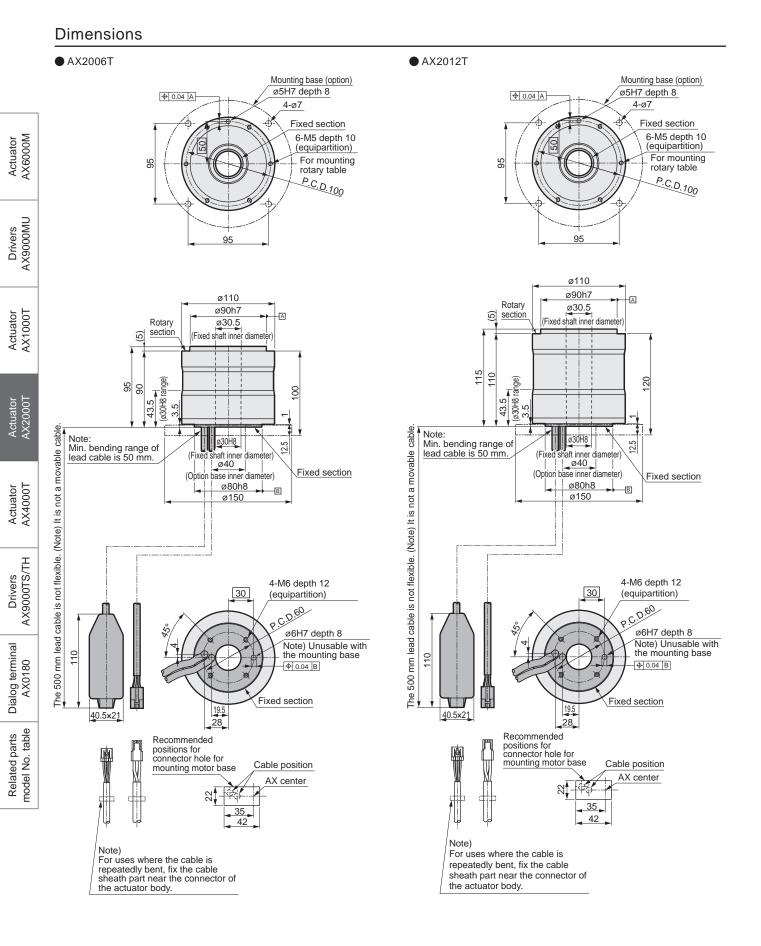

*1: Use at a speed of 80 rpm or less during continuous rotation operation.


*2: The values in () are the actuator weight with the mounting base option.

*3: Refer to the "Glossary" on page 52 for index accuracy, repeatability, output shaft runout and output shaft surface runout.

*4: When using as a UL certified product, the maximum temperature is 40°C.


Speed/maximum torque characteristics


Always read the safety precautions on pages 61 to 66 before use.

X2000T Series

KD

*1) The origin position of the actuator may differ from that shown in the dimensions.

The origin offset function allows you to set a desired origin position.

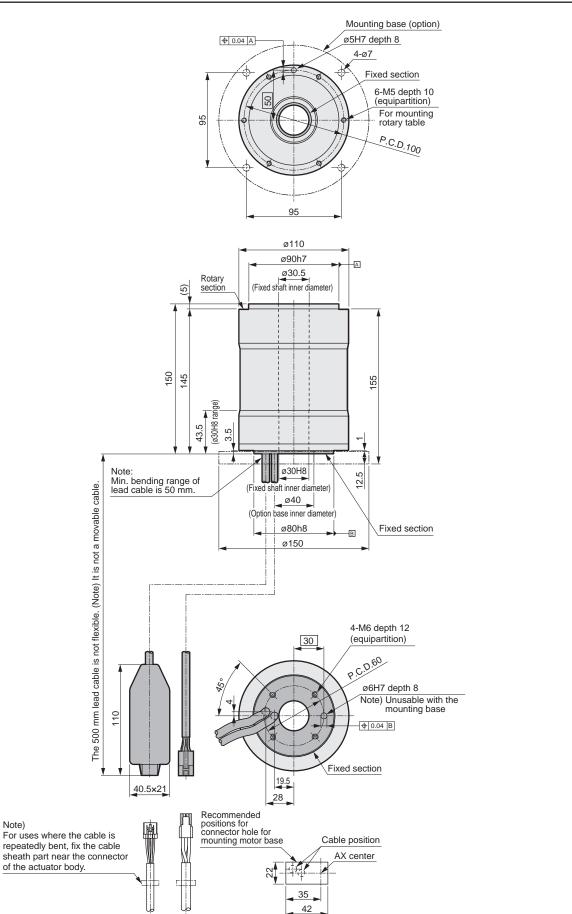
Dimensions

AX2018T

Actuator AX6000M

Drivers AX9000MU

Actuator AX1000T


Actuator AX2000T

Actuator AX4000T

Drivers AX9000TS/TH

Dialog terminal AX0180

Related parts model No. table

*1) The origin position of the actuator may differ from that shown in the dimensions. The origin offset function allows you to set a desired origin position.

20

ABSODEX **AX4000T Series**

Supports large moments of inertia load

Compatible function allows free combination of driver, actuator, and cable Large hollow diameter is convenient for cable wiring and piping, abundant options available

● Max. torque: 9/22/45/75 N·m

Supported driver: TS driver

Actuator specifications

Actuator AX6000M

Drivers AX9000MU

Actuator AX1000T

Actuator AX2000T

Drivers AX9000TS/TH

Dialog terminal

AX0180

Related parts model No. table

Item		AX4009T	AX4022T	AX4045T	AX4075T	
Max. output torque	N∙m	9	22	45	75	
Continuous output torque	N∙m	3	7	15	25	
Max. rotation speed	rpm		140 (*1)			
Allowable axial load	N	800	37	00	20000	
Allowable moment load	N∙m	40	60	80	200	
Output shaft moment of inertia	kg∙m²	0.009	0.0206	0.0268	0.1490	
Allowable moment of load inertia	kg∙m²	0.35 (1.75) (*2)	0.60 (3.00) (*2)	0.90 (5.00) (*2)	5.00 (25.00) (*2)	
Index accuracy (*5)	sec		±3	30		
Repeatability (*5)	sec		±	5		
Output shaft friction torque	N∙m	0.8	3.	5	10.0	
Resolution	P/rev		540672			
Motor insulation class		Class F				
Motor withstand voltage		1,500 VAC 1 min				
Motor insulation resistance		10 MΩ or more 500 VDC				
Operating ambient temperature		0 to 45°C (0 to 40°C: *6)				
Operating ambient humidity		20 to 85% RH, no condensation				
Storage ambient temperature		−20 to 80°C				
Storage ambient humidity		20 to 90% RH, no condensation				
Atmosphere		No corrosive gas, explosive gas, or dust				
Weight	kg	5.5	12.3 (14.6) *3	15.0 (17.3) *3	36.0 (41.0) *3	
Weight with brake	kg	_	16.4 (18.7) *3	19.3 (21.6) *3	54.0 (59.0) *3	
Output shaft runout (*5)	mm	0.03				
Output shaft surface runout (*5)	mm	0.05				
Degree of protection	ĺ	IP20				

*1: Use at a speed of 80 rpm or less during continuous rotation operation.

*2: When using in load conditions up to those given in (), set parameter 72 (integral gain magnification) = 0.3 (reference value).

*3: The values in () are the actuator weight with the mounting base option.

*4: Contact CKD whenever using continuous rotation operation in combination with parameter 72 (integral gain magnification).

*5: Refer to the "Glossary" on page 52 for index accuracy, repeatability, output shaft runout and output shaft surface runout.

*6: When using as a UL certified product, the maximum temperature is 40°C.

Electromagnetic brake specifications (option)

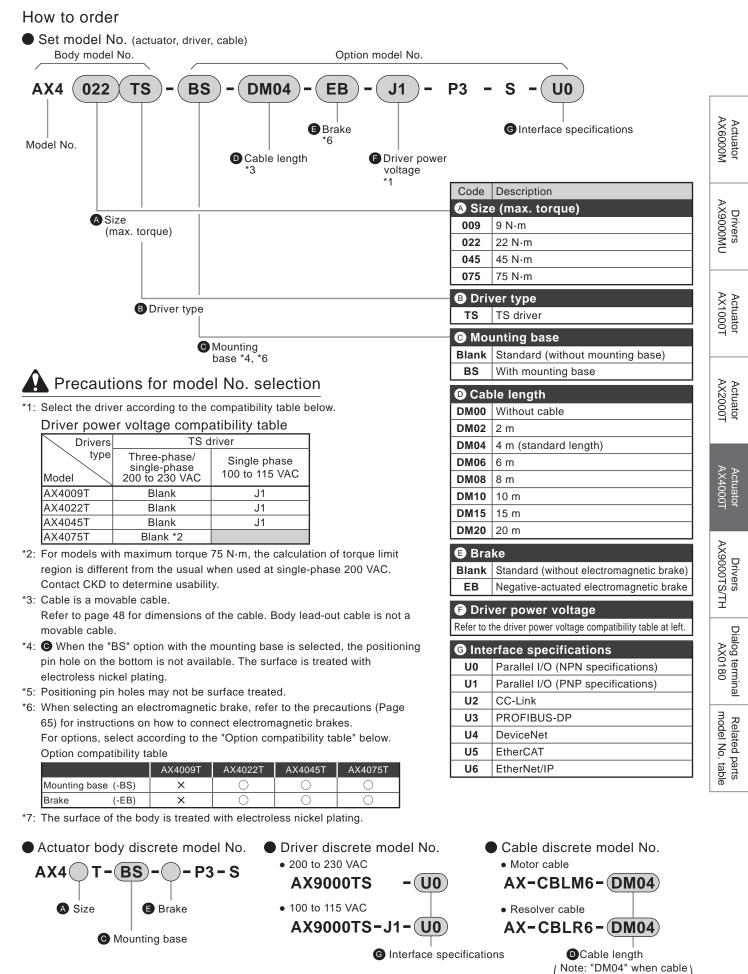
Comp	atibility	AX4022T/AX4045T	AX4075T
Туре		Non-backlash dry typ	e non-excitation type
Rated voltage	V	24 \	/DC
Power capacity	W	30	55
Rated current	А	1.25	2.30
Static friction torque	N∙m	35	200
Armature release time (brake on)	msec	50 (reference value)	50 (reference value)
Armature suction time (brake off)	msec	150 (reference value)	250 (reference value)
Retention accuracy	Minutes	45 (referen	nce value)
Max. operating frequency	times/min	60	40

*1: During output shaft rotation, the electromagnetic brake disc and fixed part may cause a scraping sound.

Also, impact noise is generated when electromagnetic brakes operate.

*2: For travel after brake off, you must change the parameter delay time by the above-mentioned armature suction time.

*3: Though it is a non-backlash type, holding a constant position is difficult if load is applied in the rotation direction. It is not for maintaining braking/precision.

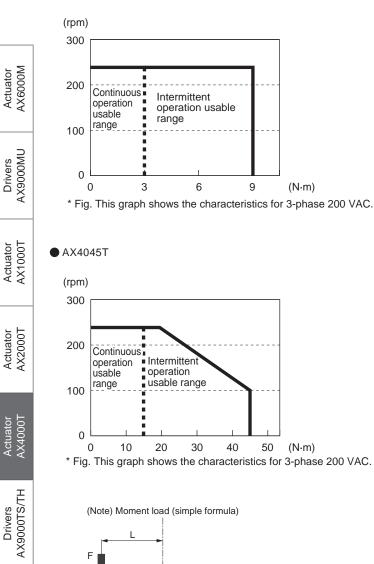

*4: Manual release of the electromagnetic brake is possible by evenly tightening the bolts in the manual release tap (3 locations).

*5: Use a non-magnetic material (SUS303, etc.) when putting a shaft through the hollow hole in the type with magnetic brakes.

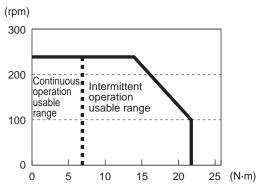
Peripheral devices may be affected due to magnetization. Please read the technical data and user's manual for details on the precautions.

Always read the safety precautions on pages 61 to 66 before use.

How to order

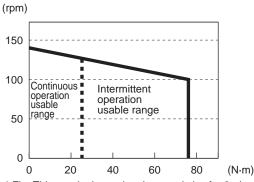


* Custom order products are CE, UL/cUL, and RoHS non-compliant. Contact CKD as needed.

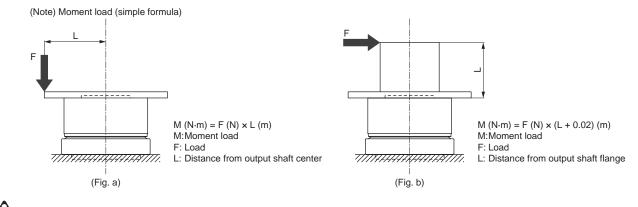

length is 4 m

Speed/maximum torque characteristics

AX4009T



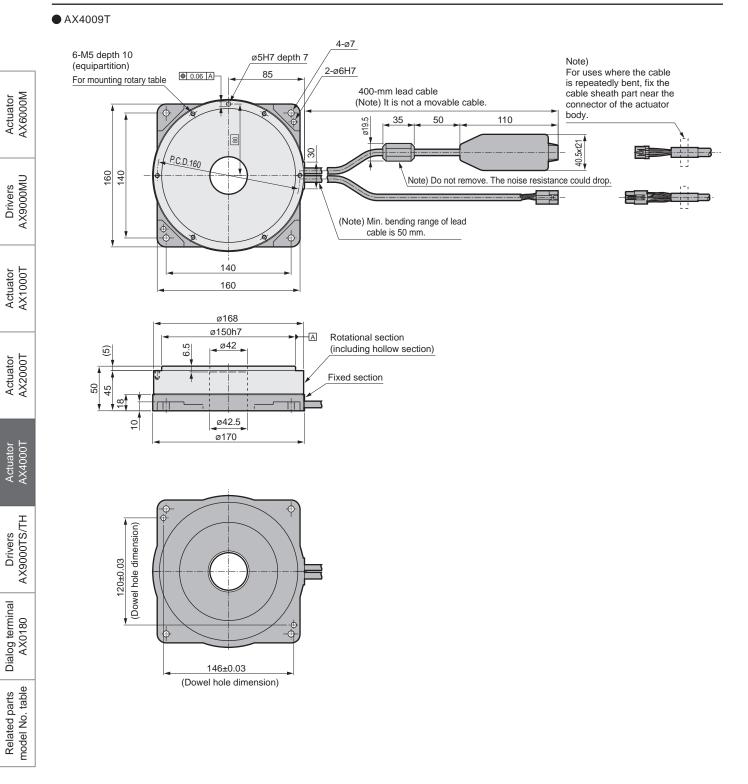
AX4022T



* Fig. This graph shows the characteristics for 3-phase 200 VAC.

• AX4075T

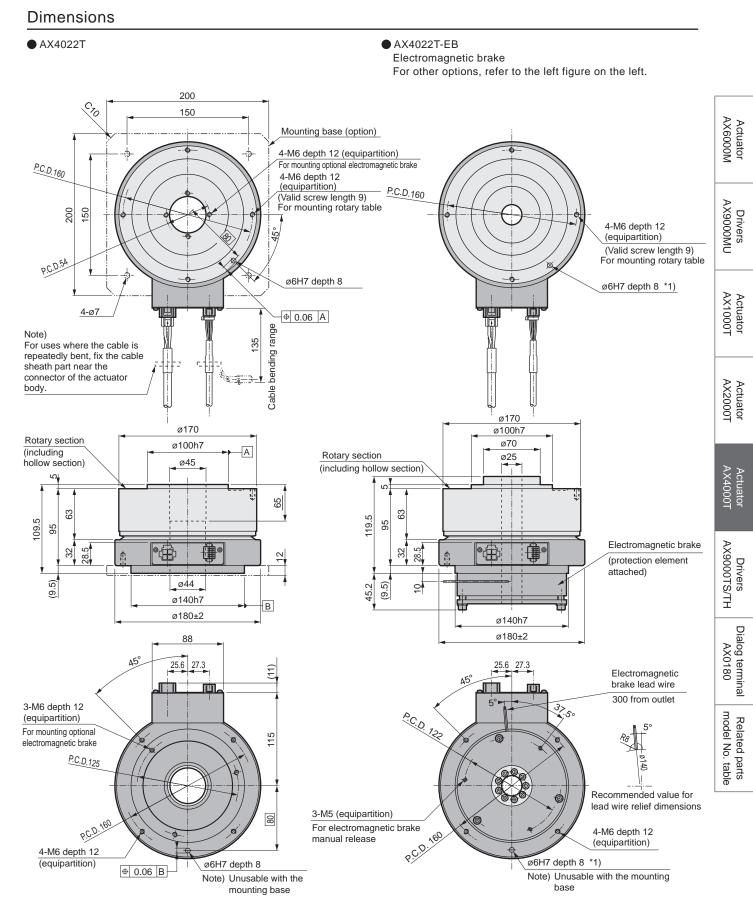
* Fig. This graph shows the characteristics for 3-phase 200 VAC.

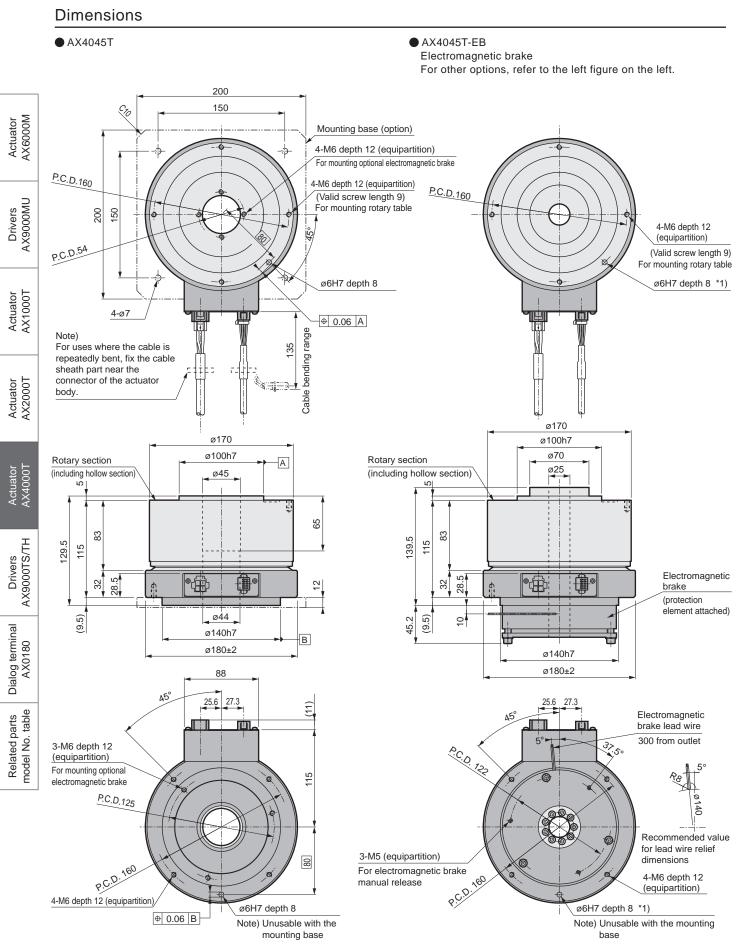

Always read the safety precautions on pages 61 to 66 before use.

Dialog terminal AX0180

Related parts model No. table

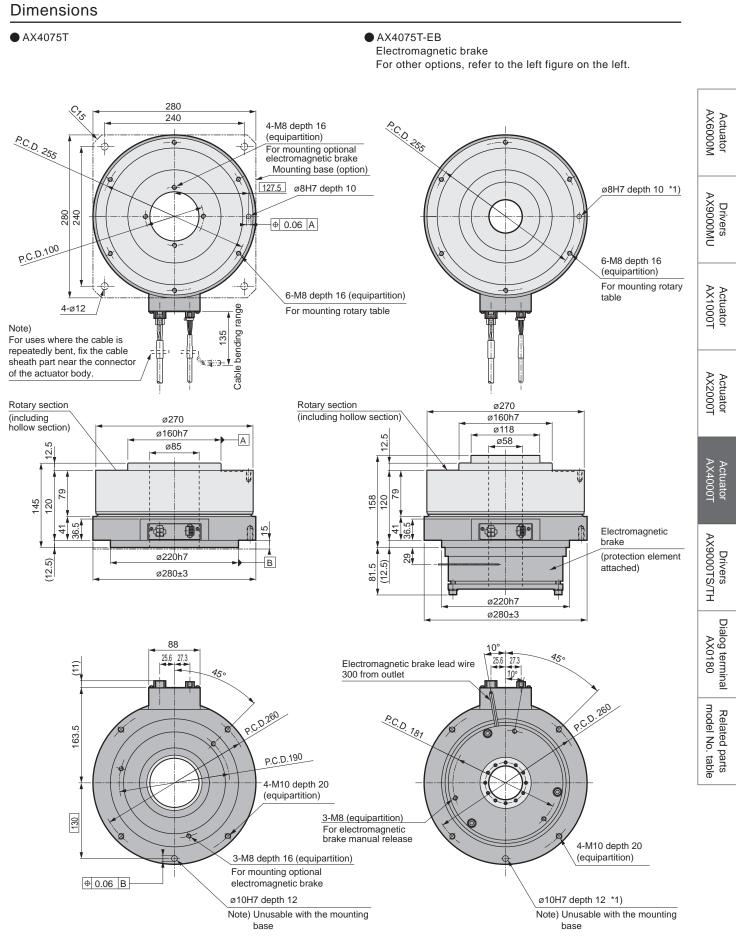
24


Dimensions


*1) The origin position of the actuator may differ from that shown in the dimensions.

The origin offset function allows you to set a desired origin position.

Dimensions



*1) The origin position of the actuator may differ from that shown in the dimensions. The origin offset function allows you to set a desired origin position. The position of the positioning pin hole is the same as that of AX4022T when an electromagnetic brake is mounted.

*1) The origin position of the actuator may differ from that shown in the dimensions. The origin offset function allows you to set a desired origin position. The position of the positioning pin hole is the same as that of AX4045T when an electromagnetic brake is mounted.

Dimensions

*1) The origin position of the actuator may differ from that shown in the dimensions. The origin offset function allows you to set a desired origin position. The position of the positioning pin hole is the same as that of AX4045T when an electromagnetic brake is mounted.

28

ABSODEX

AX4000T Series

Supports large moments of inertia load

Compatible function allows free combination of driver, actuator, and cable Large hollow diameter is convenient for cable wiring and piping, abundant options available

Max. torque: 150/300/500/1000 N·m

• Supported driver: TH driver

Actuator specifications

Actuator AX6000M

Drivers AX9000MU

Actuator AX1000T

Actuator AX2000T

Actuato

Drivers AX9000TS/TH

Dialog terminal

AX0180

model No. table Related parts

Item				AX4150T	AX4300T	AX4500T	AX410WT	
Max. output torque	N∙m	150	300	500	1000			
Continuous output torque	N∙m	50	100	160	330			
Max. rotation speed	rpm	100	(*1)	70	30			
Allowable axial load	N		200	000	·			
Allowable moment load	N∙m	300	400	500	400			
Output shaft moment of inertia	kg∙m²	0.2120	0.3260	0.7210	2.7200			
Allowable moment of load inertia	kg∙m²	75.00 (*2)	180.00 (*2)	300.00 (*2)	600.00 (*2)			
Index accuracy (*4)	sec	±30						
Repeatability (*4)	sec		±5					
Output shaft friction torque	N∙m	10.0 15.0 20						
Resolution	P/rev	540672						
Motor insulation class		Class F						
Motor withstand voltage		1,500 VAC 1 min						
Motor insulation resistance		10 MΩ or more 500 VDC						
Operating ambient temperature		0 to 45°C (0 to 40°C: *5)						
Operating ambient humidity		20 to 85% RH, no condensation						
Storage ambient temperature		−20 to 80°C						
Storage ambient humidity		20 to 90% RH, no condensation						
Atmosphere		No corrosive gas, explosive gas, or dust						
Weight	kg	44.0 (49.0) *3	66.0 (74.0) *3	115.0 (123.0) *3	198.0 (217.0) *3			
Weight with brake	kg	63.0 (68.0) *3	86.0 (94.0) *3	-	-			
Output shaft runout (*4)	mm	0.03						
Output shaft surface runout (*4)	mm	0.05 0.08			0.08			
Degree of protection	ĺ	IP20						

*1: Use at a speed of 80 rpm or less during continuous rotation operation.

*2: Settings when shipped support large moment of inertia.

*3: The values in () are the actuator weight with the mounting base option.

*4: Refer to the "Glossary" on page 52 for index accuracy, repeatability, output shaft runout and output shaft surface runout.

*5: When using as a UL certified product, the maximum temperature is 40°C.

Electromagnetic brake specifications (option)

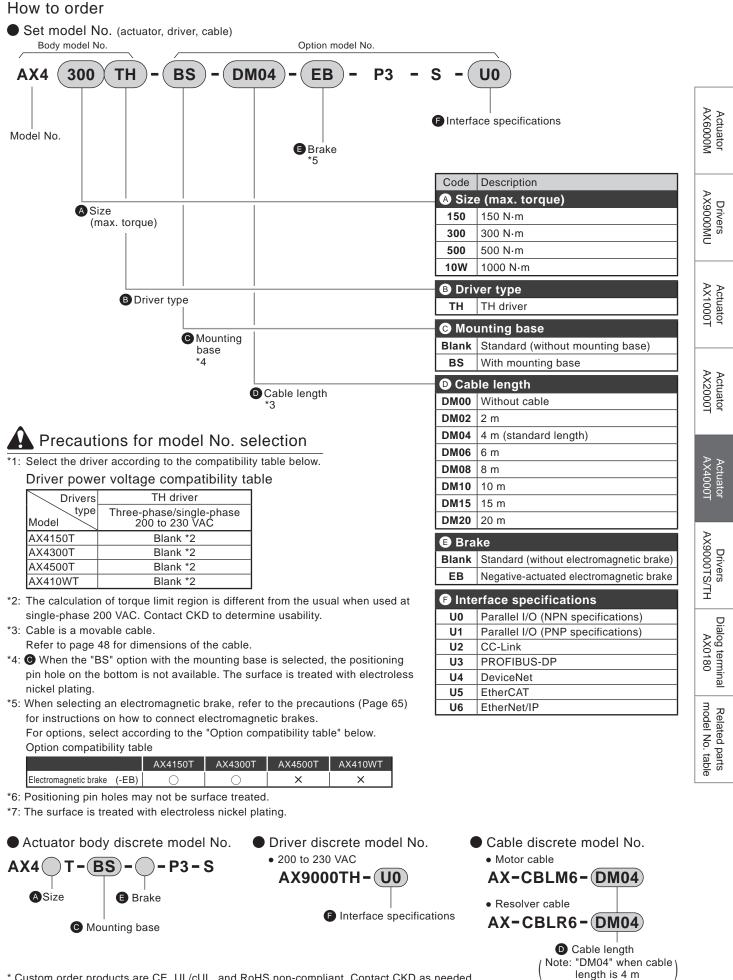
Comp	atibility	AX4150T/AX4300T
Туре		Non-backlash dry type non-excitation type
Rated voltage	V	24 VDC
Power capacity	W	55
Rated current	Α	2.30
Static friction torque	N∙m	200
Armature release time (brake on)	msec	50 (reference value)
Armature suction time (brake off)	msec	250 (reference value)
Retention accuracy	Minutes	45 (reference value)
Max. operating frequency	times/min	40

*1: During output shaft rotation, the electromagnetic brake disc and fixed part may cause a scraping sound.

Also, impact noise is generated when electromagnetic brakes operate.

*2: For travel after brake off, you must change the parameter delay time by the above-mentioned armature suction time.

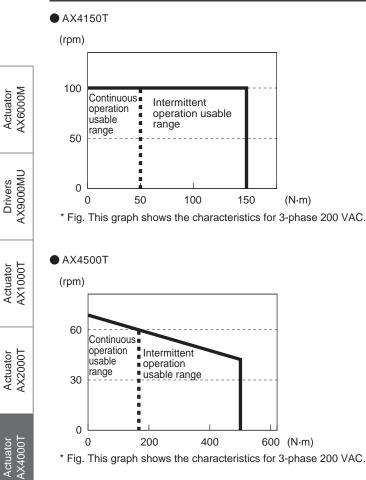
*3: Though it is a non-backlash type, holding a constant position is difficult if load is applied in the rotation direction. It is not for maintaining braking/precision.

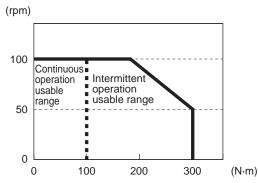

*4: Manual release of the electromagnetic brake is possible by evenly tightening the bolts in the manual release tap (3 locations).
*5: Use a non-magnetic material (SUS303, etc.) when putting a shaft through the hollow hole in the type with magnetic brakes.

Peripheral devices may be affected due to magnetization.

Please read the technical data and user's manual for details on the precautions.

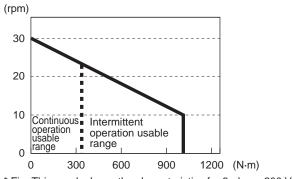
Always read the safety precautions on pages 61 to 66 before use.



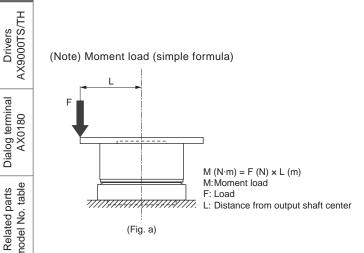

* Custom order products are CE, UL/cUL, and RoHS non-compliant. Contact CKD as needed.

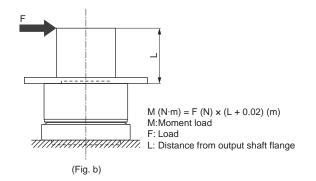
30

Speed/maximum torque characteristics

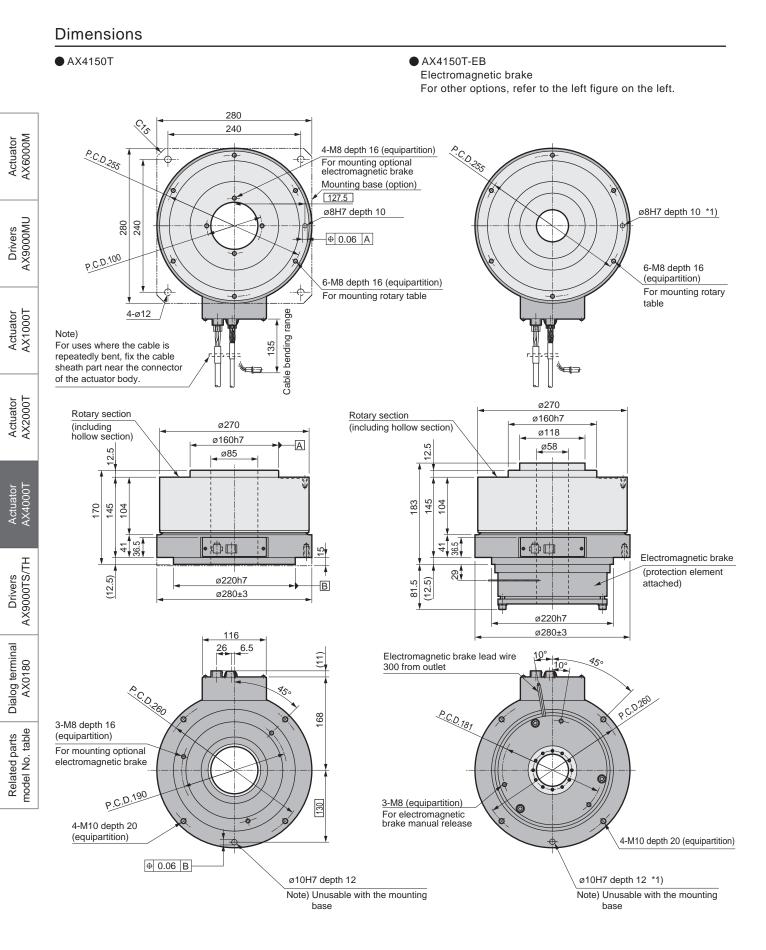


AX4300T



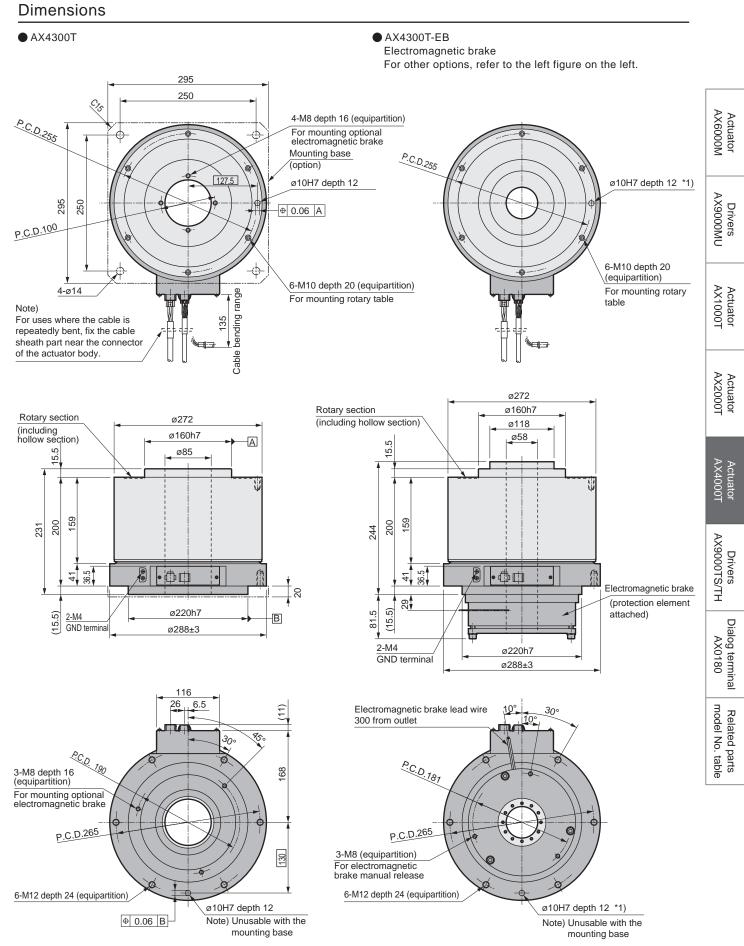

* Fig. This graph shows the characteristics for 3-phase 200 VAC.

* Fig. This graph shows the characteristics for 3-phase 200 VAC.


Always read the safety precautions on pages 61 to 66 before use.

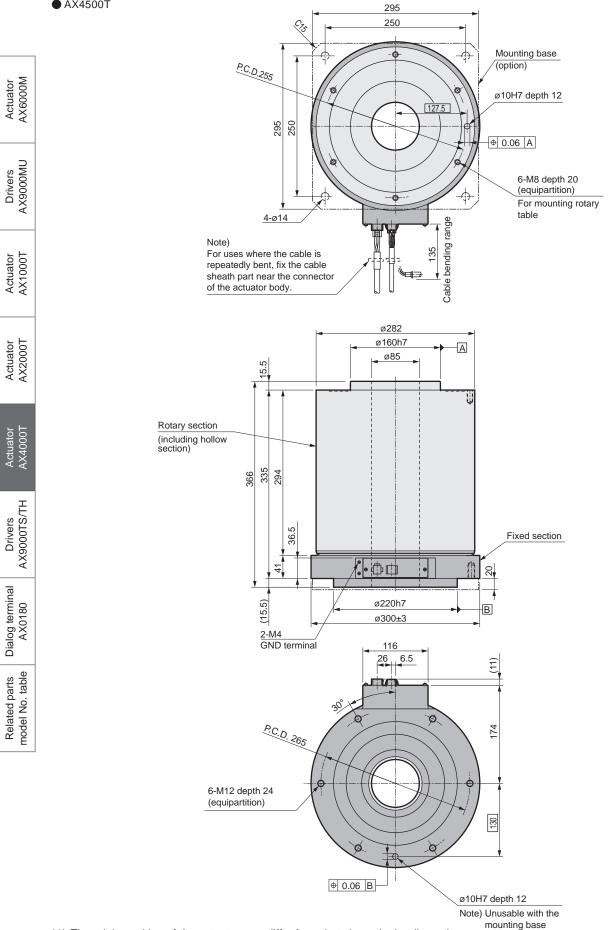
CKD

Dialog terminal


AX0180

model No. table Related parts

*1) The origin position of the actuator may differ from that shown in the dimensions. The origin offset function allows you to set a desired origin position. The position of the positioning pin hole is the same as that of AX4150T when an electromagnetic brake is mounted.


Dimensions

*1) The origin position of the actuator may differ from that shown in the dimensions. The origin offset function allows you to set a desired origin position. The position of the positioning pin hole is the same as that of AX4300T when an electromagnetic brake is mounted.

Dimensions

• AX4500T

*1) The origin position of the actuator may differ from that shown in the dimensions. The origin offset function allows you to set a desired origin position.

CKD

Dimensions

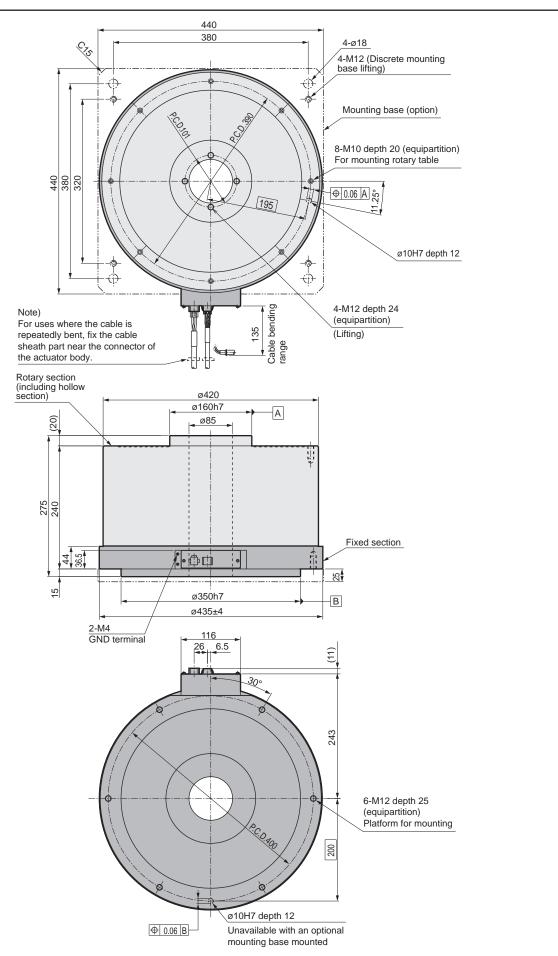
Actuator AX6000M

Drivers AX9000MU

Actuator AX1000T

Actuator AX2000T

Actuator AX4000T


Drivers AX9000TS/TH

Dialog terminal AX0180

Related parts model No. table

Dimensions

AX410WT

*1) The origin position of the actuator may differ from that shown in the dimensions. The origin offset function allows you to set a desired origin position.

36

ABSODEX (AX1000T/AX2000T/AX4000T Series)

TS/TH driver

Interface specification: Parallel I/O (NPN), Parallel I/O (PNP)

CC-Link, PROFIBUS-DP, DeviceNet EtherCAT, EtherNet/IP

therCAI, EtherNet/IP

Actuator AX6000M

Drivers AX9000MU

Actuator AX1000T

Actuator AX2000T

Actuator AX4000T

A X9000TS/TH

Dialog terminal

AX0180

model No. table

Related parts

Features

- Power supply is divided into main power supply and control power supply
- •Wiring method is changed from terminal block to connector
- Smaller/lighter weight (resin body adopted)
- •7-segment LED 2-digit display
- Compatible with encoder output (parallel I/O only)
- Serial communication options available
- Monitoring functions such as position information, alarm status, etc. (U2, U3, U4, U5, and U6 options only)

General specifications

Item		Model		
		TS driver AX9000TS	TH driver AX9000TH	
Power Supply		Three phase, Single phase 200 100 VAC ±10% to 115 VAC ±	VAC ±10% to 230 VAC ±10% (*1) 10% (J1 Option) (*2) (*3)	
supply voltage	Control power	200 VAC ±10% to 230 VAC ± 100 VAC ±10% to 115 VAC ±		
Power fr	equency	50/6	0 Hz	
Rated input current		200 VAC: 1.8 A 100 VAC: 2.4 A	200 VAC: 5.0 A	
Rated output current		1.9 A	5.0 A	
Structur	Э	Driver and controller integrated (open type)		
Operating ambient temperature		0 to 50°C		
Operating a	mbient humidity	20 to 90% RH (no condensation)		
Storage amb	ient temperature	-20 to 65°C		
Storage an	nbient humidity	20 to 90% RH (no condensation)		
Atmosph	nere	No corrosive gas or dust		
Anti-noise		1,000 V (P-P), pulse width 1 µsec, rising 1 nsec impulse noise test, induction noise (capacitive coupling)		
Vibration resistance		4.9 m/s ²		
Weight		Approx. 1.6 kg	Approx. 2.1 kg	
Degree of protection		IP2X (excluding CN4 and CN5)		

*1) For models with maximum torque 75 N·m or more, the calculation of torque limit region is different from the usual when used at single-phase 200 VAC. Contact CKD to determine usability.

*2) If 200 to 230 VAC is connected by mistake, when using power voltage 100 to 115 VAC specifications (-J1 option), the driver internal circuit will be damaged.

*3) For models with maximum torque 75 N·m or more, "-J1" cannot be selected.
*4) If the main power is cut off while the actuator is rotating, the rotation may continue due to inertia.

*5) After the main power supply is cut OFF, the motor may rotate by the residual voltage of the driver.

Breaker capacity

TS driver

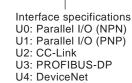
	Driver medal No.	Rush current (A)		Breaker capacity	
Actuator model No.	Driver model No.	Single phase 100 V	Rated current (A)		
AX2006T					
AX1022T, AX2012T, AX2018T		4.0 (*4)			
AX4009T, AX4022T	AX9000TS	16 (*1)	56 (*1)	10	
AX1045T, AX4045T					
AX1075T, AX4075T		_			

*1) The value of the rush current is a representative value at 115 VAC and 230 VAC.

TH driver

Actuator model No.	Driver model No.	Rush current (A)	Breaker capacity	
		Three-phase 200 V	Rated current (A)	
AX1150T, AX4150T				
AX1210T, AX4300T		56 (*1) 20	20	
AX4500T	AX9000TH		20	
AX410WT	1			

*1) The value of the rush current is a representative value at 230 VAC.



- How to order
- 200 to 230 VAC

AX9000TS

-(U0)

-(U0)

U5: EtherCAT U6: EtherNet/IP

Performance specifications

	·
ltem	Description
No. of control axes	1 axis, 540,672 pulses/1 rotation
Angle setting unit	° (degree), pulse, indexing No.
Angle min. setting unit	0.001°, 1 pulse
Speed setting unit	sec, rpm
Speed setting range	0.01 to 100 sec/0.11 to 300 rpm (*1)
Equal divisions	1 to 255
Max. command value	7-digit numeric input ±9,999,999
Timer	0.01 sec to 99.99 sec
Programming language	NC
Programming method	Set the data through RS-232C port with an interactive terminal, PC, etc.
Operation mode	Auto, MDI, jog, single block, servo OFF, pulse train input mode
Coordinates	Absolute, incremental
Acceleration curve	[5 types] Modified sine (MS), modified constant velocity (MC/ MC2), modified trapezoid (MT), trapecloid (TR)
Status display	LED display CHARGE: Main power supply POWER: Control power
Operation display	Display with 7-segment LED (2 digits)
Communication interface	RS-232C compliant
I/O signal	Refer to interface specification pages.
Program capacity	Approx. 6,000 characters (256)
Electronic thermal	Overheating protection for actuator

*1) Maximum rotation speed differs depending on the actuator connected.

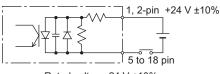
Parallel I/O (NPN)

CN3 Input signal

Pin No.	Signal name	Logic	Determination
1 to 2	External power supply input +24 V ±10%		
3 to 4	External power supply input GND		
5	Program No. selection input (Bit 0)	Positive	Level
6	Program No. selection input (Bit 1)	Positive	Level
7	Program No. selection input (Bit 2)	Positive	Level
8	Program No. selection input (Bit 3)	Positive	Level
9	Program No. setting 2nd digit input/	Positivo	Edge
9	Program No. selection input (Bit 4)	Positive	Level
10	Program No. setting 1st digit input/	Positive	Edge
10	Program No. selection input (Bit 5)		Level
11	Reset input	Positive	Edge
12	Origin return directive input	Positive	Edge
13	Start input	Positive	Edge
14	Servo on input/	L. L	Level
14	Program stop input	Positive	Edge
15	Ready return/Continuous rotation stop input	Positive	Edge
16	Answer input/Position deviation counter reset input	Positive	Edge
17	Emergency stop input	Negative	Level
18	Brake release input	Positive	Level

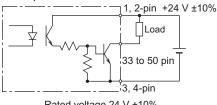
CN3 pulse train input signal

Pin No.	Signal name
19	PULSE/UP/A phase
20	-PULSE/-UP/-A phase
21	DIR/DOWN/B phase
22	-DIR/-DOWN/-B phase


Input/output circuit specifications

Description	1 circuit current (mA)	Max. points (Circuit)	Max. current (mA)	Max. power consumption (mA)
Input circuit	4	14	56	
Output circuit	50	18	900	1106
Brake output (BK+, BK-)	75	2	150	

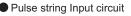
* The maximum simultaneous output points of the output circuit are 14 points out of 18 points.

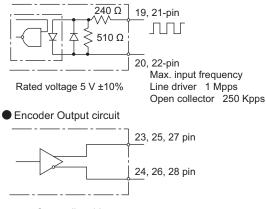

CN3 input/output circuit specifications

Input circuit

Rated voltage 24 V ±10% Rated current 4 mA (at 24 VDC)

Output circuit


Rated voltage 24 V ±10% Rated current 50 mA (MAX)


CN3 Output signal

Pin No.	Signal name	Logic
33	M code output (Bit 0)	Positive
34	M code output (Bit 1)	Positive
35	M code output (Bit 2)	Positive
36	M code output (Bit 3)	Positive
37	M code output (Bit 4)	Positive
38	M code output (Bit 5)	Positive
39	M code output (Bit 6)	Positive
40	M code output (Bit 7)	Positive
41	Imposition output	Positive
42	Positioning completion output	Positive
43	Start input wait output	Positive
44	Alarm output 1	Negative
45	Alarm output 2	Negative
46	Output 1 during indexing/Origin position output	Positive
47	Output 2 during indexing/Servo state output	Positive
48	Ready output	Positive
49	Segment position strobe output	Positive
50	M code strobe output	Positive

CN3 encoder output signal (Incremental)

Pin No.	Signal name
23	A phase (Line driver output)
24	-A phase (Line driver output)
25	B phase (Line driver output)
26	-B phase (Line driver output)
27	Z phase (Line driver output)
28	-Z phase (Line driver output)

Output: line driver Use line driver: DS26C31

Actuator AX6000M

Drivers AX9000MU

Actuator AX1000T

Actuator AX2000T

Always read the safety precautions on pages 61 to 66 before use.

*Custom order products are CE, UL/cUL, and RoHS non-compliant.

Parallel I/O (PNP)

CN3 Input signal

Pin No.	Signal name	Logic	Determination
1 to 2	External power supply input GND (*1)		Ì
3 to 4	External power supply input +24 V ±10% (*1)		
5	Program No. selection input (Bit 0)	Positive	Level
6	Program No. selection input (Bit 1)	Positive	Level
7	Program No. selection input (Bit 2)	Positive	Level
8	Program No. selection input (Bit 3)	Positive	Level
9	Program No. setting 2nd digit input/	Positive	Edge
9	Program No. selection input (Bit 4)	FUSITIVE	Level
10	Program No. setting 1st digit input/	Positive	Edge
	Program No. selection input (Bit 5)		Level
11	Reset input	Positive	Edge
12	Origin return directive input	Positive	Edge
13	Start input	Positive	Edge
14	Servo on input/	Positive Lev	Level
14	Program stop input	FUSITIVE	Edge
15	Ready return/Continuous rotation stop input	Positive	Edge
16	Answer input/Position deviation counter reset input	Positive	Edge
17	Emergency stop input	Negative	Level
18	Brake release input	Positive	Level

CN3 Output signal

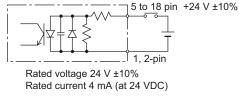
Pin No.	Signal name	Logic
33	M code output (Bit 0)	Positive
34	M code output (Bit 1)	Positive
35	M code output (Bit 2)	Positive
36	M code output (Bit 3)	Positive
37	M code output (Bit 4)	Positive
38	M code output (Bit 5)	Positive
39	M code output (Bit 6)	Positive
40	M code output (Bit 7)	Positive
41	Imposition output	Positive
42	Positioning completion output	Positive
43	Start input wait output	Positive
44	Alarm output 1	Negative
45	Alarm output 2	Negative
46	Output 1 during indexing/Origin position output	Positive
47	Output 2 during indexing/Servo state output	Positive
48	Ready output	Positive
49	Segment position strobe output	Positive
50	M code strobe output	Positive

*1) The wiring differs from that under the PNP specification of AX9000GS/AX9000GH.

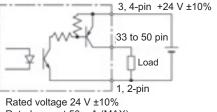
CN3 pulse train input signal

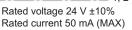
Pin No.	Signal name
19	PULSE/UP/A phase
20	-PULSE/-UP/-A phase
21	DIR/DOWN/B phase
22	-DIR/-DOWN/-B phase

Input/output circuit specifications

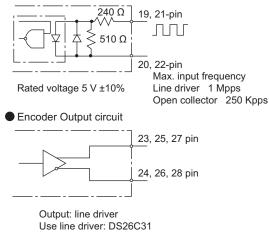

Description	1 circuit current (mA)	Max. points (Circuit)	Max. current (mA)	Max. power consumption (mA)
Input circuit	4	14	56	
Output circuit	50	18	900	1106
Brake output (BK+, BK-)	75	2	150	

* The maximum simultaneous output points of the output circuit are 14 points


out of 18 points.


CN3 input/output circuit specifications

Input circuit


Output circuit

CKD

Pulse string Input circuit

CN3 encoder output signal (Incremental)

Pin No.	Signal name
23	A phase (Line driver output)
24	-A phase (Line driver output)
25	B phase (Line driver output)
26	-B phase (Line driver output)
27	Z phase (Line driver output)
28	-Z phase (Line driver output)

Actuator AX6000M

Drivers AX9000MU

Actuator AX1000T

Actuator AX2000T

Related parts model No. table

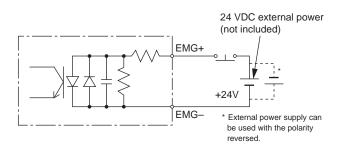
Communication specifications

	I
Item	Specifications
Power supply	5 VDC is supplied from the servo amplifier.
CC-Link version	Ver 1.10
Number of occupied stations (Station type)	2 stations (Remote device station)
Remote input points	64 points (including unusable)
Remote output points	64 points (including unusable)
Remote register input/output	Input 8 words/Output 8 words
Communication speed	10M/5M/2.5M/625k/156kbps (Selected by parameter setting)
Connection cable	CC-Link Ver. 1.10 compliant cable (3 core cable with shield)
Transmission format	HDLC compliant
Remote station No.	1 to 63 (Set by a parameter)
Number of connected units	For remote device station only, Max. 32 units/2 stations occupied
Monitor function	Present position within 1 rotation (degree, pulse), position deviation amount, program No., electronic thermal, rotation speed, point table No., torque load factor, acceleration, alarm, parameter, operation mode

I/O signal

	-	· · · ·	3	
PL	.C -	→ AX	(In	out)

$PLC \rightarrow AX$	(Input)		
Device No.	Signal name	Logic	Determination
RYn0	Program No. selection input (Bit 0)	Positive	Level
RYn1	Program No. selection input (Bit 1)	Positive	Level
RYn2	Program No. selection input (Bit 2)	Positive	Level
RYn3	Program No. selection input (Bit 3)	Positive	Level
RYn4	Program No. setting 2nd digit input/ Program No. selection input (Bit 4)	Positive	Edge Level
RYn5	Program No. setting 1st digit input/ Program No. selection input (Bit 5)	Positive	Edge Level
RYn6	Reset input	Positive	Edge
RYn7	Origin return directive input	Positive	Edge
RYn8	Start input	Positive	Edge
RYn9	Servo on input/ Program stop input	Positive	Level Edge
RYnA	Ready return input/Continuous rotation stop input	Positive	Edge
RYnB	Answer input/Position deviation counter reset input	Positive	Edge
RYnC	Emergency stop input	Negative	Level
RYnD	Brake release input	Positive	Level
RYnE	Job operation input (CW direction)	Positive	Edge
RYnF	Job operation input (CCW direction)	Positive	Edge
RY(n+1)0	Unusable/Travel unit selection input (Bit 0)	Positive	Level
RY(n+1)1	Unusable/Travel unit selection input (Bit 1)	Positive	Level
RY(n+1)2	Unusable/Travel speed unit selection input	Positive	Level
RY(n+1)3	Operation by table, Operation by data input switching input	Positive	Level
RY(n+1)4 to RY(n+1)F	Unusable	\backslash	\bigwedge
RY(n+2)0	Monitor output execution request	Positive	Level
RY(n+2)1	Command code execution request	Positive	Edge
RY(n+2)2 to RY(n+2)F	Unusable	\backslash	\square
RY(n+3)0 to RY(n+3)F	Unusable	Ň	


AX (Output) \rightarrow PLC

TS/TH driver

Device No. Signal name Logic RXn0 M code output (Bit 0) Positive RXn1 M code output (Bit 1) Positive Actuator AX6000M M code output (Bit 2) RXn2 Positive RXn3 M code output (Bit 3) Positive M code output (Bit 4) RXn4 Positive RXn5 M code output (Bit 5) Positive RXn6 M code output (Bit 6) Positive RXn7 M code output (Bit 7) Positive AX9000MU RXn8 Positive Imposition output Drivers RXn9 Positioning completion output Positive RXnA Start input wait output Positive RXnB Alarm output 1 Negative RXnC Alarm output 2 Negative Output 1 during indexing/ RXnD Positive Origin position output Actuator AX1000T Output 2 during indexing/ RXnE Positive Servo state output Ready output RXnF Positive X(n+1)0 Segment position strobe output Positive X(n+1)1 M code strobe output Positive RX(n+1)2 Actuator AX2000T to RX(n+1)F Unusable X(n+2)0 Monitoring Positive X(n+2)1 Command code execution completed Positive RX(n+2)2 to Unusable Actuator AX4000T RX(n+2)F RX(n+3)0 to Unusable RX(n+3)A X(n+3)B Remote READY Positive Drivers AX9000TS/TH X(n+3)C `to RX(n+3)F Unusable

* n is determined by the setting of the station No.

TB3 Input circuit specifications (Machine stops)

Rated voltage 24 V ±10%, rated current 5 mA or less

Safety precautions

Reserve a sufficient distance between the communication cable and power cable (motor cable, power supply cable, etc.).
 Placing the communication cable and power cable close to each other or bundling these cables makes communication unstable due to noise, possibly resulting in a communication error or retry.

For details on the installation of the communication cable, refer to the CC-Link installation manuals.

Dialog terminal AX0180

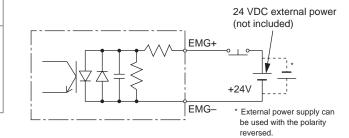
Related parts model No. table

PROFIBUS-DP

Communication specifications

Item	Specifications
Communication protocol	PROFIBUS DP-V0 compliant
I/O data	Input 8 bytes/Output 8 bytes
Communication speed	12M/6M/3M/1.5M/500k /187.5k/93.75k/45.45k /19.2k/9.6kbps (Autobaud rate function)
Connection cable	PROFIBUS compliant cable (2-wire twisted pair cable with shield)
Node address	2 to 125 (Set by a parameter)
Number of connected units	Without repeater: Up to 32 stations for each segment With repeater: Up to 126 stations for each segment
Monitor function	Present position within 1 rotation (degree, pulse), position deviation amount, program No., electronic thermal, rotation speed, point table No torque load factor, acceleration, alarm, parameter, operation mode

I/O signal PL


$C \rightarrow AX$	(Input)
Byte No.	Signal name
0.0	Program No. selection inp
0.1	Program No. selection inp

No.	Signal name	Logic	Determination
0.0	Program No. selection input (Bit 0)	Positive	Level
0.1	Program No. selection input (Bit 1)	Positive	Level
0.2	Program No. selection input (Bit 2)	Positive	Level
0.3	Program No. selection input (Bit 3)	Positive	Level
0.4	Program No. setting 2nd digit input/ Program No. selection input (Bit 4)	Positive	Edge Level
0.5	Program No. setting 1st digit input/ Program No. selection input (Bit 5)	Positive	Edge Level
0.6	Reset input	Positive	Edge
0.7	Origin return directive input	Positive	Edge
1.0	Start input	Positive	Edge
1.1	Servo on input/ Program stop input	Positive	Level Edge
1.2	Ready return input/Continuous rotation stop input	Positive	Edge
1.3	Answer input/Position deviation counter reset input	Positive	Edge
1.4	Emergency stop input	Negative	Level
1.5	Brake release input	Positive	Level
1.6	Job operation input (CW direction)	Positive	Edge
1.7	Job operation input (CCW direction)	Positive	Edge
2.0	Parameter No. (Bit 8)/Travel unit selection input (Bit 0)	Positive	Level
2.1	Parameter No. (Bit 9)/Travel unit selection input (Bit 1)	Positive	Level
2.2	Parameter No. (Bit 10)/Travel speed unit selection input	Positive	Level
2.3	Operation by table, Operation by data input switching input	Positive	Level
2.4 2.5	Unusable	\setminus	$\overline{\ }$
2.6	Monitor output execution request	Positive	Level
2.7	Command code execution request	Positive	Edge
3.0	Parameter No. (Bit 0)/Unusable	Positive	Level
3.1	Parameter No. (Bit 1)/Unusable	Positive	Level
3.2	Parameter No. (Bit 2)/Unusable	Positive	Level
3.3	Parameter No. (Bit 3)/Unusable	Positive	Level
3.4	Parameter No. (Bit 4)/Unusable	Positive	Level
3.5	Parameter No. (Bit 5)/Unusable	Positive	Level
3.6	Parameter No. (Bit 6)/Unusable	Positive	Level
3.7	Parameter No. (Bit 7)/Unusable	Positive	Level

Logic Determi

AX (Output) \rightarrow PLC				
Byte No.	Signal name	Logic		
0.0	M code output (Bit 0)	Positive		
0.1	M code output (Bit 1)	Positive		
0.2	M code output (Bit 2)	Positive		
0.3	M code output (Bit 3)	Positive		
0.4	M code output (Bit 4)	Positive		
0.5	M code output (Bit 5)	Positive		
0.6	M code output (Bit 6)	Positive		
0.7	M code output (Bit 7)	Positive		
1.0	Imposition output	Positive		
1.1	Positioning completion output	Positive		
1.2	Start input wait output	Positive		
1.3	Alarm output 1	Negative		
1.4	Alarm output 2	Negative		
1.5	Output 1 during indexing/ Origin position output	Positive		
1.6	Output 2 during indexing/ Servo state output	Positive		
1.7	Ready output	Positive		
2.0	Segment position strobe output	Positive		
2.1	M code strobe output	Positive		
2.2 to 2.5	Unusable			
2.6	Monitoring	Positive		
2.7	Command code execution completed	Positive		
3.0 to 3.7	Unusable			

TB3 Input circuit specifications (Machine stops)

Rated voltage 24 V ±10%, rated current 5 mA or less

Safety precautions

For details on the installation of a communication cable, refer to "Installation Guideline for PROFIBUS DP/FMS" issued by the PROFIBUS Organization or the PROFIBUS wiring guide.

Actuator AX6000M

Drivers AX9000MU

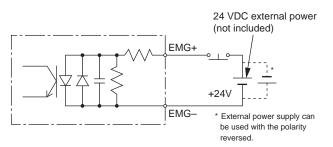
Actuator AX1000T

Actuator AX2000T

DeviceNet

DeviceNet

Communication specifications


Item	Specifications
Power supply for communication	11 to 25 VDC
Current consumption of power supply for communication	50 mA or less
Communication protocol	DeviceNet compliant: Remote I/O
Number of occupied nodes	Input 8 bytes/Output 8 bytes
Communication speed	500 k/250 k/125 kbps (Selected by parameter setting)
Connection cable	DeviceNet compliant cable (5-wire cable with shield, 2 signal lines, 2 power cables, 1 shield)
Node address	0 to 63 (Set by a parameter)
Number of connected units	Max. 64 units (including the master)
Monitor function	Present position within 1 rotation (degree, pulse), position deviation amount, program No., electronic thermal, rotation speed, point table No., torque load factor, acceleration, alarm, parameter, operation mode

I/O signal

PLC \rightarrow AX	0			AX (Outpu	$(t) \rightarrow PLC$
Byte				Byte	Í
No.	Signal name	Logic	Determination	No.	Sig
0.0	Program No. selection input (Bit 0)	Positive	Level	0.0	M code
0.1	Program No. selection input (Bit 1)	Positive	Level	0.1	M code
0.2	Program No. selection input (Bit 2)	Positive	Level	0.2	M code
0.3	Program No. selection input (Bit 3)	Positive	Level	0.3	M code
0.4	Program No. setting 2nd digit input/ Program No. selection input (Bit 4)	Positive	Edge Level	0.4	M code
0.5	Program No. setting 1st digit input/ Program No. selection input (Bit 5)	Positive	Edge Level	0.6	M code M code
0.6	Reset input	Positive	Edge	1.0	Impositi
0.7	Origin return directive input	Positive	Edge	1.1	Positionin
1.0	Start input	Positive	Edge	1.2	Start inp
	Servo on input/		Level	1.3	Alarm ou
1.1	Program stop input	Positive	Edge	1.4	Alarm ou
1.2	Ready return input/Continuous rotation stop input	Positive	Edge	1.5	Output 1 Origin po
1.3	Answer input/Position deviation counter reset input	Positive	Edge	1.6	Output 2 Servo st
1.4	Emergency stop input	Negative	Level	1.7	Ready o
1.5	Brake release input	Positive	Level	2.0	Segment p
1.6	Job operation input (CW direction)	Positive	Edge	2.1	M code
1.7	Job operation input (CCW direction)	Positive	Edge		<u> </u>
2.0	Parameter No. (Bit 8)/Travel unit selection input (Bit 0)	Positive	Level		
2.1	Parameter No. (Bit 9)/Travel unit selection input (Bit 1)	Positive	Level	2.2 to	Unusabl
2.2	Parameter No. (Bit 10)/Travel speed unit selection input	Positive	Level	2.5	Unusabi
2.3	Operation by table, Operation by data input switching input	Positive	Level		
2.4 2.5	Unusable		$\overline{\ }$	2.6	Monitori
2.6	Monitor output execution request	Positive	Level	2.7	Command co
2.7	Command code execution request	Positive	Edge		
3.0	Parameter No. (Bit 0)/Unusable	Positive	Level		
3.1	Parameter No. (Bit 1)/Unusable	Positive	Level		
3.2	Parameter No. (Bit 2)/Unusable	Positive	Level	3.0	
3.3	Parameter No. (Bit 3)/Unusable	Positive	Level	to	Unusabl
3.4	Parameter No. (Bit 4)/Unusable	Positive	Level	3.7	
3.5	Parameter No. (Bit 5)/Unusable	Positive	Level		
3.6	Parameter No. (Bit 6)/Unusable	Positive	Level		

4	AX (Output	t) \rightarrow PLC		
	Byte No.	Signal name	Logic	
	0.0	M code output (Bit 0)	Positive	
	0.1	M code output (Bit 1)	Positive	
	0.2	M code output (Bit 2)	Positive	Actuato AX60001
	0.3	M code output (Bit 3)	Positive	00 uat
	0.4	M code output (Bit 4)	Positive	OM OF
	0.5	M code output (Bit 5)	Positive	
	0.6	M code output (Bit 6)	Positive	
	0.7	M code output (Bit 7)	Positive	-
	1.0	Imposition output	Positive	Кп
	1.1	Positioning completion output	Positive	90(
	1.2	Start input wait output	Positive	DON
	1.3	Alarm output 1	Negative	2
	1.4	Alarm output 2	Negative	
	1.5	Output 1 during indexing/ Origin position output	Positive	
	1.6	Output 2 during indexing/ Servo state output	Positive	Actuato AX1000
	1.7	Ready output	Positive	01 to
	2.0	Segment position strobe output	Positive	'
	2.1	M code strobe output	Positive	
	2.2 to 2.5	Unusable		Actuator AX2000T
	2.6	Monitoring	Positive	Actuato AX4000
	2.7	Command code execution completed	Positive	01 tr
	2.1			A)
	3.0 to 3.7	Unusable		Drivers X9000TS/TH
				Dial

TB3 Input circuit specifications (Machine stops)

Rated voltage 24 V ±10%, rated current 5 mA or less

Safety precautions

- Reserve a sufficient distance between the communication cable and power cable (motor cable, power supply cable, etc.). Placing the communication cable and power cable close to each other or bundling these cables makes communication unstable due to noise, possibly resulting in a communication error or retry.
- For details on the installation of the communication cable, refer to the DeviceNet installation manuals.

Actuator
Drivers
Dialog terminal
Related parts

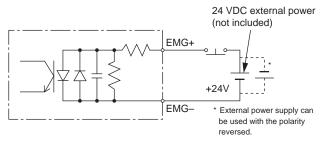
EtherCAT

Communication specifications

Item	Specifications
Communication protocol	EtherCAT
Communication speed	100 Mbps (fast Ethernet, full duplex)
Process data	Fixed PDO mapping
Max. PDO data length	RxPDO: 40 bytes/TxPDO: 40 bytes
Station arias	0 to 65535 (Set by a parameter)
Connection cable	EtherCAT compliant cable (CAT5e or higher twisted pair cable (double shield with aluminum tape and braid) is recommended.)
Node address	Automatic indexing the master
Monitor function (Output Data)	Present position within 1 rotation (degree, pulse), position deviation amount, program No., electronic thermal, rotation speed, point table No., torque load factor, acceleration, alarm, parameter, operation mode

I/O signal PLC → AX (Input)

Actuator AX6000M


Drivers AX9000MU

Drivers

Related parts

Actuator AX1000T Sub Index Display name bit Index Signal name Logic 0 Program No. selection input (Bit 0) Level Positive 1 Program No. selection input (Bit 1) Positive Level 2 Program No. selection input (Bit 2) Positive Level Actuator AX2000T 3 Program No. selection input (Bit 3) Positive Level Program No. setting 2nd digit input/ Edge 4 Positive Program No. selection input (Bit 4) Level Program No. setting 1st digit input/ Edge 5 Positiv Program No. selection input (Bit 5) Level 6 Reset input Positive Edge 7 Origin return directive input Positive Edae Actuator AX4000T 8 Start input Positive Edge Servo on input/ Level 9 Positiv Program stop input Edge Ready return input/Continuous 10 Edge Positive rotation stop input 0x01 Input signal 1 Answer input/Position deviation AX9000TS/TH 11 Positive Edge counter reset input 0x2001 12 Emergency stop input Level Negative 13 Brake release input Positive Level 14 Job operation input (CW direction) Positive Edge 15 Job operation input (CCW direction) Positive Edge Unusable/Travel unit selection input 16 Positiv Level Dialog terminal (Bit 0) Unusable/Travel unit selection input AX0180 17 Positive Level (Bit 1) Unusable/Travel speed unit 18 Positiv Level selection input Operation by table, Operation by 19 Positive Level data input switching input model No. table 20 to 31 Unusable 0 Monitor output execution request Positive I evel 1 Command code execution request Positive Edge 0x02 Input signal 2 2 to 31 Unusable

TB3 Input circuit specifications (Machine stops)

Rated voltage 24 V ±10%, rated current 5 mA or less

PDO mapping

RxPDO

Index	Sub Index	Display name	Description
0x1600	0x00	Number of PDO objects	10
	0x01	Input signal 1	0x2001-0x01
	0x02	Input signal 2	0x2001-0x02
	0x03	Input data 1	0x2003-0x01
	0x04	Input data 2	0x2003-0x02
	0x05	Input data 3	0x2003-0x03
	0x06	Input data 4	0x2003-0x04
	0x07	Input data 5	0x2003-0x05
	0x08	Input command 1	0x2003-0x06
	0x09	Input command 2	0x2003-0x07
	0x0A	Input command 3	0x2003-0x08

TxPDO

IXPDO			
Index	Sub Index	Display name	Description
0x1A00	0x00	Number of PDO objects	10
	0x01	Output signal 1	0x2005-0x01
	0x02	Output signal 2	0x2005-0x02
	0x03	Output data 1	0x2007-0x01
	0x04	Output data 2	0x2007-0x02
	0x05	Output data 3	0x2007-0x03
	0x06	Output data 4	0x2007-0x04
	0x07	Output data 5	0x2007-0x05
	0x08	Output command 1	0x2007-0x06
	0x09	Output command 2	0x2007-0x07
	0x0A	Output command 3	0x2007-0x08

I/O signal

AX (Output) → PLC

Index	Sub Index	Display name	bit	Signal name	Logic							
			0	M code output (Bit 0)	Positive							
			1	M code output (Bit 1)	Positive							
			2	M code output (Bit 2)	Positive							
			3	M code output (Bit 3)	Positive							
			4	M code output (Bit 4)	Positive							
			5	M code output (Bit 5)	Positive							
			6	M code output (Bit 6)	Positive							
			7	M code output (Bit 7)	Positive							
			8	Imposition output	Positive							
			9	Positioning completion output	Positive							
			10	Start input wait output	Positive							
	0x01	01 Output signal 1	11	Alarm output 1	Negative							
				12	Alarm output 2	Negative						
0x2005											13	Output 1 during indexing/Origin position output
			14	Output 2 during indexing/Servo state output	Positive							
			15	Ready output	Positive							
			16	Segment position strobe output	Positive							
			17	M code strobe output	Positive							
				18 to 31	Unusable	\searrow						
			0	Monitoring	Positive							
	0.00		1	Command code execution completed	Positive							
	0x02	Output signal 2	2 to 31	Unusable	$\overline{\ }$							

Safety precautions

- Reserve a sufficient distance between the communication cable and power cable (motor cable, power supply cable, etc.).
- Placing the communication cable and power cable close to each other or bundling these cables makes communication unstable due to noise, possibly resulting in a communication error or retry.
- For details on the installation of the communication cable, refer to ETG.1600 EtherCAT installation guidelines.

CKD

EtherNet/IP

Actuator AX6000M

Drivers AX9000MU

Actuator AX1000T

Actuator AX2000T

Actuator AX4000T

Drivers AX9000TS/TH

Dialog terminal AX0180

Related parts model No. table

EtherNet/IP

Communication specifications I/O signal

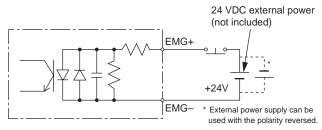
Item	Specifications
Communication protocol	EtherNet/IP
Communication speed	Automatic setting (100 Mbps/10 Mbps, full duplex/half duplex)
Occupied bytes	Input: 32 bytes/Output: 32 bytes
IP address	0.0.0.0 to 255.255.255.255 (Set by a parameter)
Subnet mask	0.0.0.0 to 255.255.255.255 (Set by a parameter)
Default gateway	0.0.0.0 to 255.255.255.255 (Set by a parameter)
RPI (Packet interval)	10 msec to 1,000 msec
Connection cable	EtherNet/IP compliant cable (CAT5 or higher twisted pair cable (double shield with aluminum tape and braid) is recommended.)
Monitor function	Present position within 1 rotation (degree, pulse), position deviation amount, program No., electronic thermal, rotation speed, point table No., torque load factor, acceleration, alarm, parameter, operation mode

		gnai		
PLC -	→ AX	(Input)		
Byte	bit	Signal name	Logic	Determination
	0	Program No. selection input (Bit 0)	Positive	Level
	1	Program No. selection input (Bit 1)	Positive	Level
	2	Program No. selection input (Bit 2)	Positive	Level
	3	Program No. selection input (Bit 3)	Positive	Level
	5	Program No. setting 2nd digit input/	1 0311/0	Edge
0	4	Program No. selection input (Bit 4)	Positive	Level
	5	Program No. setting 1st digit input/	Positive	Edge
		Program No. selection input (Bit 5)	D	Level
	6	Reset input	Positive	Edge
	7	Origin return directive input	Positive	Edge
	0	Start input	Positive	Edge
	1	Servo on input/	Positive	Level
	'	Program stop input	FUSILIVE	Edge
	2	Ready return input/Continuous rotation stop input	Positive	Edge
		Answer input/Position deviation		
1	3	counter reset input	Positive	Edge
	4	Emergency stop input	Negative	Level
	5	Brake release input	Positive	Level
	-	· · · · ·	Positive	Edge
	6	Job operation input (CW direction)		<u> </u>
	7	Job operation input (CCW direction)	Positive	Edge
	0	Unusable/Travel unit selection input	Positive	Level
		(Bit 0)	1	
	1	Unusable/Travel unit selection input	Positive	Level
2	'	(Bit 1)	1 0011176	
2	2	Unusable/Travel speed unit selection input	Positive	Level
	~	Operation by table, Operation by data input	Destriction	1
	3	switching input	Positive	Level
	4 to 7	Unusable	\sim	\sim
3	-	Unusable	\sim	\sim
-	0	Monitor output execution request	Positive	Level
4	1		Positive	
4		Command code execution request	Positive	Edge
	2 to 7	Unusable		
5	-	Unusable	\geq	
6	-	Unusable	\square	
7	-	Unusable	\sim	
8	-		Ν	\setminus
9	-		$ \rangle$	$ \rangle$
10	-	Monitor code 1	$ \rangle$	
11			$ \rangle$	$ \rangle$
	-		\vdash	\vdash
12	-		$ \rangle$	
13	-	Monitor code 2	$ \rangle$	$ \rangle$
14	-		$ \rangle$	
15	-			L_\
16	-			\setminus
17	-		$ \rangle$	$ \rangle$
18	-	Monitor code 3	$ \rangle$	
19	-		$ \rangle$	$ \rangle$
_	-		\vdash	<u> </u>
20	-		$ \rangle$	
21	-	Command code	$ \rangle$	$ \rangle$
22	-		$ \rangle$	$ \rangle$
23	-		$ \rangle$	\
24	-		V ,	\setminus
25	-		$ \rangle$	$ \rangle$
26	-	Write data/A code or P code	$ \rangle$	
_	-		$ \rangle$	$ \rangle$
27	-		\vdash	\vdash
28	-			
29	-	Data setting/F code	$ \rangle$	$ \rangle$
30	-		$ \rangle$	
24			1	$ \rangle$

I/O signal AX (Output) \rightarrow PLC Byte bit Signal name Logic 0 M code output (Bit 0) Positive 1 M code output (Bit 1) Positive 2 M code output (Bit 2) Positive 3 M code output (Bit 3) Positive 4 M code output (Bit 4) Positive M code output (Bit 5) Positive 5 6 M code output (Bit 6) Positive M code output (Bit 7) Positive Imposition output 0 Positive 1 Positioning completion output Positive 2 Start input wait output Positive Alarm output 1 3 Negative Alarm output 2 4 Negative Output 1 during indexing/Origin 5 Positive position output Output 2 during indexing/Servo state 6 Positive output 7 Positive Ready output 0 Segment position strobe output Positive 1 M code strobe output Positive

0

1


2

31

•	W code strobe output	1 0311170
2 to 7	Unusable	
-	Unusable	
0	Monitoring	Positive
1	Command code execution completed	Positive
2 to 7	Unusable	
-		Ν
-	Monitor data 1	$ \rangle$
-		$ \rangle$
-		
-		\wedge
-	Monitor data 2	$ \rangle$
-		
-		
-		Ν
-	Monitor data 3	$ \rangle$
-		$ \rangle$
-		
-		
-	Response code	$ \rangle$
-		$ \rangle$
-		\vdash
-		
-	Read data	$ \rangle$
-		$ \rangle$
-		\vdash
-		$ \rangle$
-	Unusable	$ \rangle$
-		$ \rangle$
-		

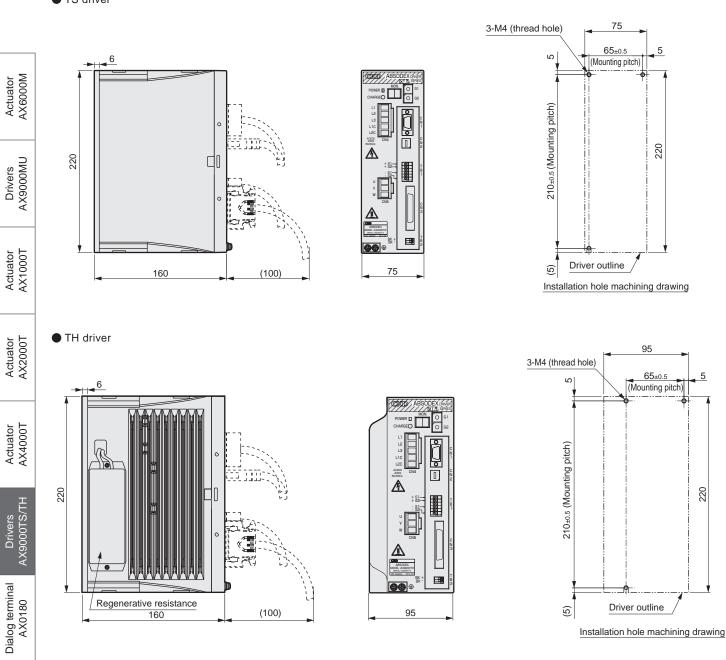
TB3 Input circuit specifications (Machine stops)

31 -

Rated voltage 24 V ±10%, rated current 5 mA or less

Safety precautions

Reserve a sufficient distance between the communication cable and power cable (motor cable, power supply cable, etc.).


Placing the communication cable and power cable close to each other or bundling these cables makes communication unstable due to noise, possibly resulting in a communication error or retry.

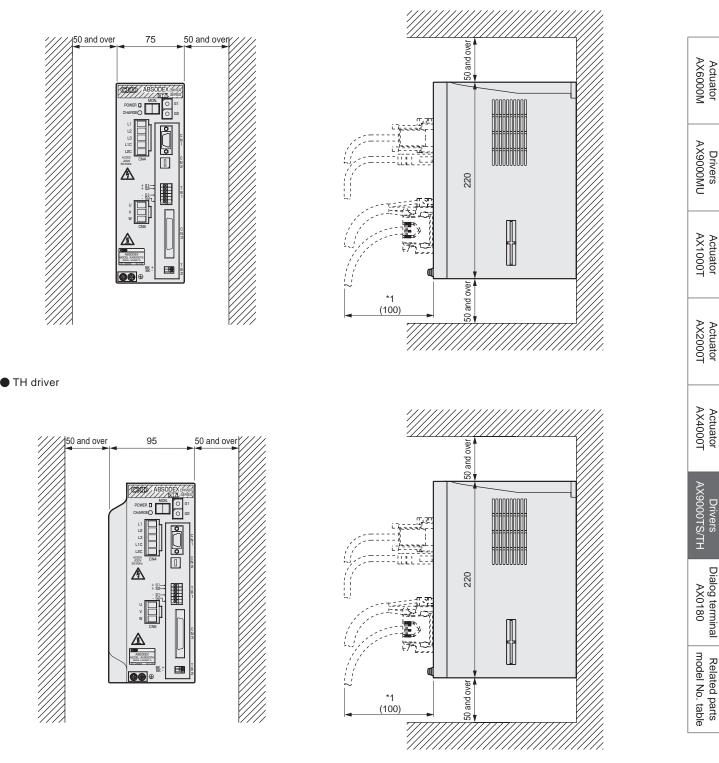
For details on the installation of the communication cable, refer to the EtherNet/IP installation manuals.

Dimensions

TS driver

Accessories supplied with the driver

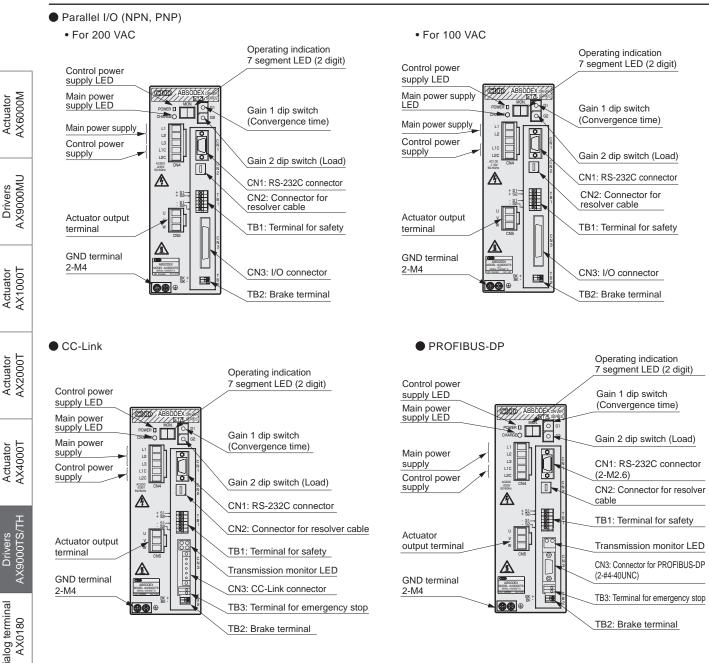
Model No.	Specifications	CN3 Connector	Power supply connector (CN4)	Motor cable connector (CN5)
AX9000TS-U0 AX9000TH-U0	Parallel I/O (NPN)	10150-3000PE (Plug) 10350-52A0-008 (Shell)		
AX9000TS-U1 AX9000TH-U1	Parallel I/O (PNP)	Sumitomo 3M Ltd.		
AX9000TS-U2 AX9000TH-U2	CC-Link	BLZP5.08HC/05/180F AU OR BX Weidmüller	PC4/5-ST-7.62	PC4/3-ST-7.62
AX9000TS-U3 AX9000TH-U3	PROFIBUS-DP	Not attached	Phoenix Contact	Phoenix Contact
AX9000TS-U4 AX9000TH-U4	DeviceNet	MSTB2.5/5-STF-5.08AUM Phoenix Contact		
AX9000TS-U5 AX9000TH-U5	EtherCAT	Not attached		
AX9000TS-U6 AX9000TH-U6	EtherNet/IP	Not attached		


For additional orders of parts, refer to the parts model No. table.

45

Related parts model No. table

Installation Dimension

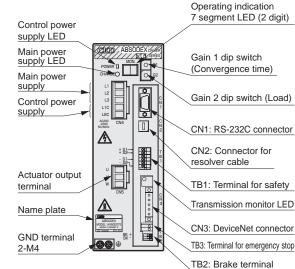


*1) Determine the dimension with extra allowance according to a cable you want to use.

Safety precautions

- The ABSODEX driver does not have a dust-proof/waterproof structure. To prevent dust, water, oil or other substances from entering the driver, provide protection according to the working environment.
- Install the ABSODEX driver away from other devices, walls or other structures by 50 mm or more from the top, bottom and sides. When heat is generated from other drivers or devices, check that the ambient temperature does not exceed 50°C.

Panel Details



DeviceNet

Drivers

Dialog terminal

model No. table Related parts

CKD

EtherCAT

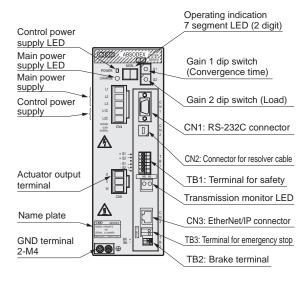
Gain 2 dip switch (Load)

CN1: RS-232C connector CN2: Connector for

CN3: DeviceNet connector TB3: Terminal for emergency stop

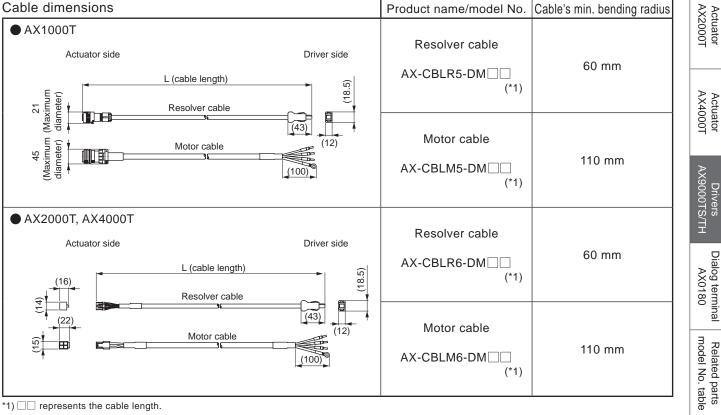
Operating indication 7 segment LED (2 digit) Control power supply LED Main power supply LED Gain 1 dip switch (Convergence time) Main power supply 0 Gain 2 dip switch (Load) Control power supply 6 CN1: RS-232C connector A CN2: Connector for resolver cable Actuator output TB1: Terminal for safety terminal Transmission monitor LED ∕∕ Name plate CN3: EtherCAT connector TB3: Terminal for emergency stop GND terminal 00 2-M4

TB2: Brake terminal


Actuator AX6000M

Drivers AX9000MU


Actuator AX1000T


Panel Details

EtherNet/IP

Cable Specifications

*1) \Box represents the cable length.

Safety precautions

- Connect the correct motor cable and driver by checking the mark tube of the cable and the display of the driver.
- For uses where the cable is repeatedly bent, fix the cable sheath part near the connector of the actuator body.
- For the AX4009T and AX2000T Series, the lead-out cable of the actuator section is not movable. Make sure to fix the cable in the connector section to prevent the cable from moving. Do not pull the lead-out cable to lift the unit or do not apply an excessive force to the cable. Otherwise, malfunction, an alarm, damage of the connector part, or disconnection may result.
- When connecting the cable, fully insert the connector. Also, tighten the connector mounting screws and fix screws securely.
- Do not disconnect, extend, or make other modifications to the cable. Such modifications may cause failure or malfunction.
- For the cable length L, refer to the cable length shown in the How to order.

ABSODEX Handy Terminal AX0180

TS/TH driver

Features

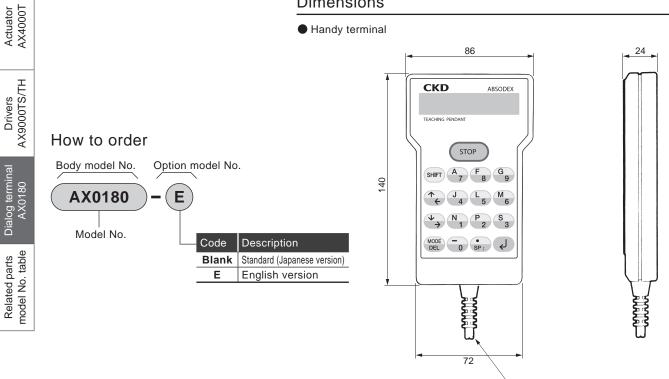
(1) Programming is easy. For an equal segment program, you can easily write a program by answering the questions interactively from the handy terminal.

Actuator AX6000M

Drivers AX9000MU

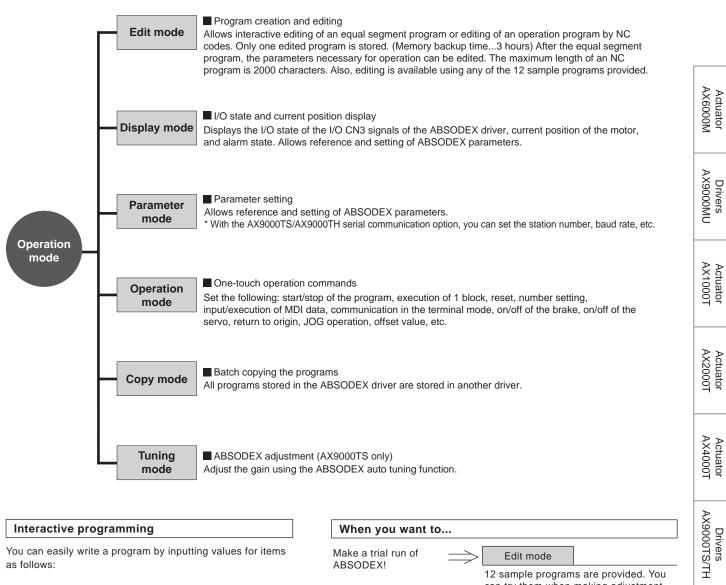
Actuator AX1000T

Actuator AX2000T


- (2) No dedicated power supply is required. The power is supplied from ABSODEX.
- (3) Backup is available. The programs and parameters can be stored, and programs can be copied.
- (4) Available also for conventional models. With the S/GS/H/GH/WGH type drivers, this product operates in the same way as the conventional handy terminal (AX0170H).

Specifications

Item	AX0180
Operation mode	Edit, Display, Parameter, Operation, and Copy modes
Program capacity	Equal segment or NC program 2,000 characters (One)
Program No.	Equal segment program: Program No. 0 to 999
Display	16 characters × 2 digits (LCD display)
lanut kaua	17 keys
Input keys	(Stop key: 1, Control key: 5 characters, Number key: 11)
Backup	Super capacitor (about 3 hours)
Power supply	Supplied by the ABSODEX driver
Cable length	2 m
Operating ambient temperature	0 to 50°C
Operating ambient humidity	20 to 90% (no condensation)
Storage ambient temperature	-20 to 80°C
Storage ambient humidity	20 to 90% (no condensation)
Atmosphere	No corrosive gas or dust
Weight	Body only About 140 g


* For the English version, messages are displayed in English. The characters on the operation panel are the same as those of the Japanese version.

Dimensions

Handy terminal

Interactive programming		when you want to	•
You can easily write a program by inputting values for items as follows:		Make a trial run of	Edit mode 12 sample programs are provided. You
[Example of input valu	es for a program]		can try them when making adjustment.
New Origin return position	Program No. [0 to 999] 1. Origin 2. Indexing	Write an ABSODEX - program and store it into ABSODEX!	Edit mode You can input programming values and
Return direction	1. CW 2. CCW 3. Shortcut [1.0 to 20.0] rpm	Run a program stored in ABSODEX!	Store the program by a simple procedure.
Number of segments Travel time	[1 to 255] [0.01 to 100] seconds		specifying the program No.
Rotation direction	1. CW 2. CCW	Make use of the	Parameter mode
Stop processing	1. Wait for start 2. Dwell	cam curve!	5 types of cam curves are provided. Driving operation taking advantages of the properties is one touch away.
Brake	 Using the product Vacant 	Check the ON/OFF	Display mode
Delay timer M Cord	[0.01 to 99.99] seconds 1. M Cord 2. Segmentation position	of I/O!	You can display the I/O status.

Dialog terminal

Related parts model No. table

Actuator AX6000M

Drivers AX9000MU

Actuator AX1000T

Actuator AX2000T

Actuator AX4000T

Drivers AX9000TS/TH

Dialog terminal AX0180

Related parts model No. table

How to order ABSODEX related parts

Related parts

Part name	Compatible model No.	Model No.
PC communication cable	AX Series	AX-RS232C-9P

*1) The PC communication cable is 2 meters long.

*2) The "AX Tools" configuration tool is available (free of charge). The latest version can be downloaded from the following URL. https://www.ckd.co.jp/kiki/en/

Mounting base

Compatible model No.	Model No.] [Compatible model No.	Model No.
AX1022T	AX-AX1022-BASE-BS] [AX4022T	AX-AX4022-BASE-BS
AX1045T	AX-AX1045-BASE-BS		AX4045T	AX-AX4045-BASE-BS
AX1075T	AX-AX1075-BASE-BS		AX4075T	AX-AX4075-BASE-BS
AX1150T	AX-AX1150-BASE-BS	11	AX4150T	AX-AX4150-BASE-BS
AX1210T	AX-AX1210-BASE-BS	1 [AX4300T	AX-AX4300-BASE-BS
AX2006T	AX-AX2006-BASE-BS] [AX4500T	AX-AX4500-BASE-BS
AX2012T	AX-AX2012-BASE-BS		AX6001M, AX6003M	AX-AX6000-BASE-BS
AX2018T	AX-AX2018-BASE-BS	1 '		

Noise filter

Part name	Compatible model No.	Model No.	
Noise filter for power supply (Three phase/Single phase 200-230 VAC)	AX Series	AX-NSF-3SUP-EF10-ER-6	
Noise filter for power supply (single phase 250 VAC/15A *3)	AX Series	AX-NSF-NF2015A-OD	
Ferrite core for motor cable	AX Series	AX-NSF-RC5060ZZ	
Clamp filter for power cable (small 2-piece set)	AX6000M Series	AX-NSF-ZCAT2035-0930A	
Clamp filter for resolver cable (1 piece each for large and small size)	AX6000M Series	AX-NSF-FC01-SET	

(*3) With 250 VAC It can also be used with 24 VDC.

(*4) To make these products compliant with EU standards and CE marking or UL standards, the user is required to provide accessories such as a circuit breaker and FG clamp. For details, refer to the instruction manual or (technical data).

Other components

Part name	Compatible model No.	Model No.	
Power supply connector (CN4)	TS/TH Series	AX-CONNECTOR-PC45	
Motor cable connector (CN5)	TS/TH Series	AX-CONNECTOR-PC43	
Power supply connector protective cover (CN4)	TS/TH Series	AX-COVER-KGG-PC45	
Motor cable connector protective cover (CN5)	TS/TH Series	AX-COVER-KGG-PC43	
I/O connector (CN3: For Parallel I/O)	AX Series (-U0, U1)	AX-CONNECTOR-MDR	
I/O connector (CN3: For CC-Link)	AX Series (-U2)	AX-CONNECTOR-BLZ5	
I/O connector (CN3: For DeviceNet)	AX Series (-U4)	AX-CONNECTOR-MSTB	
Protection element for electromagnetic brake	AX Series (-EB)	AX-PARTS-TNR20V121K	
Power supply connector set (with open tool)	AX9000MU Series	AX-CONNECTOR-04JFAT-KIT	

CKD

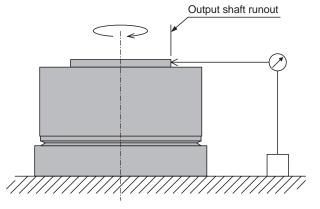
Glossary

Index accuracy

The index accuracy of ABSODEX is the difference between the target position set by an NC program and the actual stop position. This target position is the angle (seconds) from the reference station (origin return position).

As shown in the right figure, the index accuracy is calculated using the maximum value and minimum value of the differences between the target positions and actual stop positions. These positions are expressed with $\pm x$ seconds and the width as shown in the figure. For angle measurement, a high-precision encoder is used.

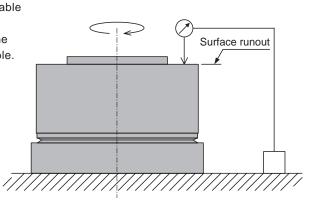
Repeatability

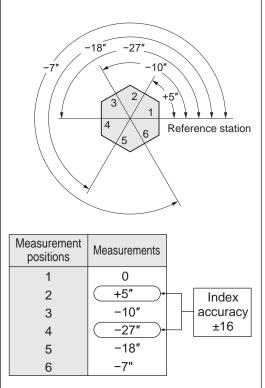

The repeatability expressed by angle (seconds) is the maximum value of angle irregularities of the repeat stop positions when reciprocating operation is performed for a certain target position under the same conditions.

Depending on the accuracy characteristics required by the equipment, it is necessary to differentiate repeat accuracy and index accuracy.

*Second: A unit (degree/minute/second) for expressing an angle. 1 degree = 60 minutes = 3600 seconds

Output shaft runout


This the runout accuracy of the inlay side on the table mounting side.


Output shaft surface runout

This the runout accuracy of the table mounting side.

* Measured at the periphery of the screw hole for mounting the table.

Index accuracy measurement example

AX Series Selection guide (1)

Selection guide

Units and symbols of operation conditions				
Load moment of inertia	(kg·m²)	J		
Travel angle	(°)	Ψ		
Travel time	(s)	t1		
Cycle time	(s)	to		
Load friction torque	(N·m)	TF		
Work torque	(N·m)	Tw		
Cam curve		Select from (MS, MC, MT, TR)		

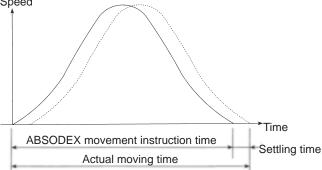
1. Moment of inertia of load

Calculate the moment of inertia of load and temporarily select an actuator that can allow the moment of inertia.

2. Rotation speed

The max. rotation speed Nmax is obtained by the formula:

$$N_{max} = V_m \cdot \frac{\psi}{6 \cdot t_1}$$
 (rpm)


Where ψ and t_1 represent travel angle (°) and travel time (s), respectively. V_m is a constant determined by the cam curve.

Check that the value of Nmax dose not exceed the max. rotation speed defined in the actuator specifications.

[Precautions]

The actual travel time is the directive travel time of the ABSODEX plus the stabilization time.

Speed

Though the stabilization time depends on working conditions, it is approximately between 0.025 and 0.2 seconds. For the travel time t_1 in model selection, use the directive travel time of ABSODEX. Also, for setting the travel time with an NC program, use the directive travel time of ABSODEX.

(Note) The friction torque works on the output shaft by the bearing, sliding surface, and other friction. The friction torque can be obtained by the following relational expression: Tf = μ ·Ff·Rf (N·m) Ff = m·g where μ : Coefficient of friction $\hline Rolling friction & Sliding friction \\ \hline \mu = 0.03 \text{ to } 0.05 & \mu = 0.1 \text{ to } 0.3 \\ Ff : Force working on the sliding surface, bearing, etc. (N)$

- Rf: Average friction radius (m)
- m: Weight (kg)
- g : Gravity acceleration (m/s 2)

3. Load torque

 a) The maximum load torque is obtained with the following formula.

$$T_{m} = [A_{m} \cdot (J+J_{M}) \cdot \frac{\psi \cdot \pi}{180 \cdot t_{1}^{2}} + T_{F} + T_{W}] \cdot f_{C} + T_{MF}$$

b) The effective value of the load torque is obtained with the following formula.

$$T_{rms} = \sqrt{\frac{t_1}{t_0} \cdot [\mathbf{r} \cdot \mathbf{A}_m \cdot (\mathbf{J} + \mathbf{J}_M) \cdot \frac{\psi \cdot \pi}{180 \cdot t_1^2} \cdot fc]^2 + (T_F \cdot fc + T_W \cdot fc + T_{MF})^2}$$

The values in the following table are applied to Vm, Am and r.

Cam curve Vm		Am	r
MS	1.76	5.53	0.707
MC	1.28	8.01	0.500
MT	2.00	4.89	0.866
TR	2.18	6.17	0.773

JM, TMF, fc are as follows:

JM : Output shaft moment of inertia (kg·m²)

 T_{MF} : Output shaft friction torque (N·m)

fc : Used factor (For normal use: fc = 1.5)

For the temporarily selected actuator,

Max. load torque < Max. output torque

Effective value of load torque < Continuous output torque If either of the above conditions is not met, re-calculate the load torque with a larger actuator.

- Note) There is a torque limit region where the max. torque decreases at the time of high-speed rotation. For use in the torque limit region, use the mode selection software to determine the availability of the device.
- (Note) The work torque indicates an exterior load, expressed as torque, working as the load on the ABSODEX output shaft.

The work torque Tw is calculated by the following formula:

 $Tw = Fw \times Rw (N \cdot m)$

Fw (N) : Necessary force for work

Rw (m) : Working radius

(Example)

For the body on its side (the output shaft in the horizontal direction), the table, workpiece, jigs and so forth are work torques.

53

4. Regenerative power

For the AX9000TS/AX9000TH driver, calculate the regenerative power using the following simple formula and determine the availability.

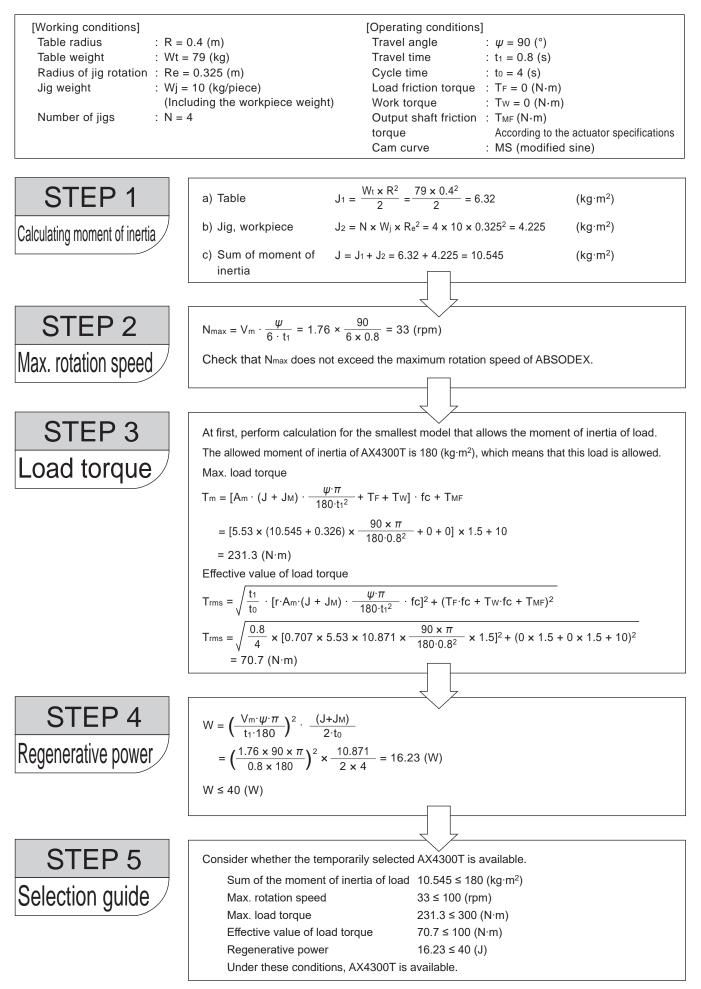
• For AX9000TS drivers

The AX9000TS driver does not have a built-in regenerative resistor. Therefore, check that the value of the regenerative energy calculated by the simple formula below does not exceed energy chargeable with a capacitor (table below).

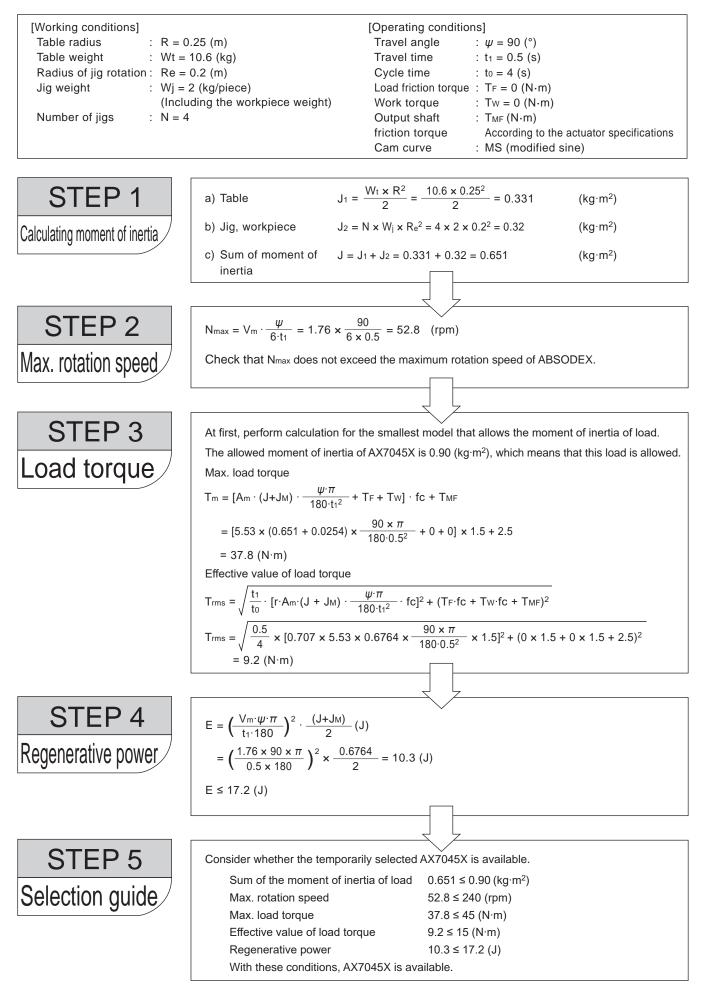
$$\mathsf{E} = \left(\frac{\mathsf{V}_{\mathsf{m}} \cdot \boldsymbol{\psi} \cdot \boldsymbol{\pi}}{\mathsf{t}_1 \cdot \mathsf{180}}\right)^2 \cdot \frac{(\mathsf{J} + \mathsf{J}_{\mathsf{M}})}{2} (\mathsf{J})$$

Power supply Processable specification regenerative energy (Remarks	
200 VAC	17.2	Value when the input voltage of the main power is 200 VAC	
100 VAC(-J1)	17.2	Value when the input voltage of the main power is 100 VAC	

For AX9000TH drivers


AX9000TH drivers have limitation on the consumption capability of the regenerative power in the driver. The value is obtained by the following simple formula:

$$W = \left(\frac{V_{m} \cdot \psi \cdot \pi}{t_{1} \cdot 180}\right)^{2} \cdot \frac{(J+J_{M})}{2 \cdot t_{0}} (W)$$


 $W \le 40$

If this condition is met, re-consider the operation conditions and load conditions.

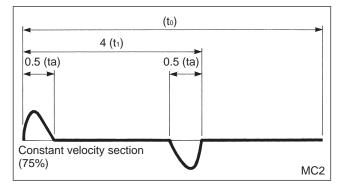
AX series Selection guide (1)

56

AX Series

Selection guide (2)

For model selection for "MC2 curve"


What is MC2 curve?

The MC2 curve is a cam curve for which the constant velocity interval can be freely set by setting the acceleration/deceleration time while there is a constant velocity interval during travel, as is the case with an MC (modified constant) curve.

For an MC (generic term: MCV50) curve, the percentage of the constant velocity interval is 50%.

Note: The setting of the acceleration/deceleration time is 1/2 or less of the travel time. When the setting of the acceleration/deceleration time exceeds 1/2 of the travel time, the cam curve is automatically changed to the MS (modified sine) curve.

The example diagram shows the velocity pattern when the percentage of the constant velocity interval is 75% by setting the acceleration/deceleration time (ta) to 0.5 seconds for the 4 seconds of the travel time (t₁).

Selection method

For the MC2 curve, the formula below is used to select a model.

Travel angle	:	ψ(°)
Cycle time	1	to (s)
Travel time	1	t1 (s)
Acceleration/deceleration time	1	ta (s)
Load moment of inertia	1	J (kg⋅m²)
Output shaft moment of inertia	:	Jм (kg·m²)
Friction torque	:	Tf (N·m)
Work torque	:	Tw (N·m)
Output shaft friction torque	:	T _{MF} (N⋅m)

Max. rotation speed: Nmax (rpm)

Nmax =
$$\frac{\psi}{6 (t_1 - 0.863ta)}$$

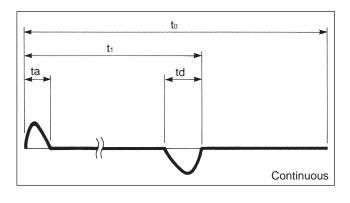
Load torque (max. value): Tm (N·m)

$$Tm = \left[5.53 \text{ (J+J_M)} \cdot \frac{\psi \cdot \left(1 - \frac{t_1 - 2ta}{t_1 - 0.863ta}\right) \cdot \pi}{720 \cdot ta^2} + Tf + T_w \right] \cdot fc + T_{MF}$$

Load torque (effective value): Trms (N·m)

 $\text{Trms} = \sqrt{\frac{2\text{ta}}{\text{t}_0}} \cdot \left[3.91 \text{ } (\text{J} + \text{J}_M) \cdot \frac{\psi \cdot \left(1 - \frac{\text{t}_1 - 2\text{ta}}{\text{t}_1 - 0.863\text{ta}}\right) \cdot \pi}{720 \cdot \text{ta}^2} \cdot \text{fc} \right]^2 + [(\text{Tf} + \text{T}_w) \cdot \text{fc} + \text{T}_{MF}]^2$

For model selection for "Continuous rotation"


What is continuous rotation?

The continuous rotation has the following functions.

1. Continuous	: Rotation continues at a constant rotation
rotation	speed until the continuous rotation stop
	input is input.

2. Stop at equal : With the equal segment specified, the device stops at the equal segment position by a continuous rotation stop input.

The example diagram shows the velocity pattern where the motor is accelerated at the acceleration time: ta up to the set rotation speed: N, and then stopped, by a continuous rotation stop input, at the deceleration time: td.

Selection method

For the continuous rotation, the formula below is used to select a model.

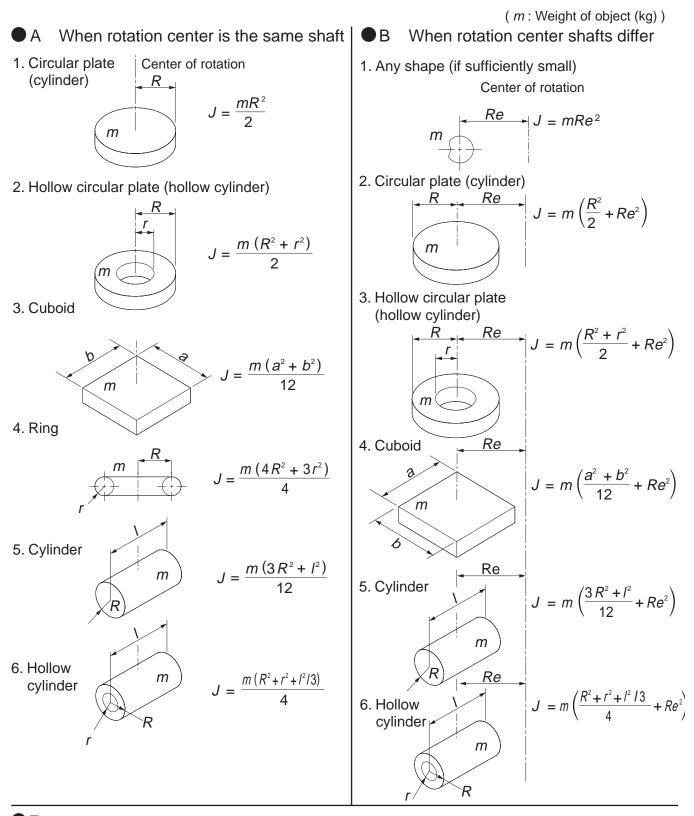
Rotation speed	:	N (rpm)
Cycle time	:	to (s)
Acceleration time	:	ta (s)
Deceleration time	:	td (s)
Load moment of inertia	:	J (kg∙m²)
Output shaft moment of inertia	:	Jм (kg·m²)
Friction torque	:	Tf (N·m)
Work torque	:	Tw (N·m)
Output shaft friction torque	:	T _{MF} (N·m)
Max. rotation speed: Nmax (rpn	۱)	(*1)

Load torque (max. value): Tm (N·m)

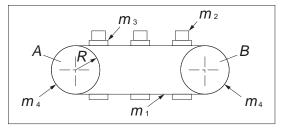
$$\mathsf{Tm} = \left[5.53 \left(\mathsf{J} + \mathsf{J}_{\mathsf{M}} \right) \cdot \frac{6.82\mathsf{N} \cdot \mathsf{ta} \cdot \pi}{720 \cdot \mathsf{ta}^2} + \mathsf{Tf} + \mathsf{T}_{\mathsf{w}} \right] \cdot \mathsf{fc} + \mathsf{T}_{\mathsf{M}}$$

Load torque (effective value): Trms (N·m)

$$Trms = \sqrt{\frac{2ta}{t_0}} \cdot \left[3.91 (J+J_M) \cdot \frac{6.82N \cdot ta \cdot \pi}{720 \cdot ta^2} \cdot fc \right]^2 + [(Tf+T_w) \cdot fc+T_{MF}]^2$$


The formula above is applicable when $ta \le td$. When ta > td, replace ta with td for perform selection.

*1) At the time of continuous rotation, the maximum rotation speed is limited. Use the device according to the actuator specifications.


57 **CKD**

Formulas of moment of inertia

For conveyor

*m*₁ : Chain weight

$$J = (m_1 + m_2 + m_3 + \frac{m_4}{2}) \cdot R^2$$

- m_2 : Workpiece total weight m_3 : Jig (pallet) total weight
- m_4 : Sprocket A (drive) + B total weight
- R : Drive side sprocket radius

58

AX series Selection guide

Company name Your name Division TEL FAX	
TEL FAX	
Operating conditions	
1. Index 2. Oscillator	
Load conditions Table Material 1. Steel 2. Aluminum Outline Dt (mm) Plate thickness ht (mm) Weight m1 (kg)	_
Workpiece Image: Constraint of the second	
Quantity np (pc.)	, , , , , , , , , , , , , , , , , , ,
 Other load conditions Installation position 1. Horizontal (Fig.2) 2. Vertical (Fig. 3) External job 1. None 2. Available (Note) Eccentric load caused by gravity from vertical installation, external load caused by caulking work Dial plate support form bottom 1. None 2. Available Coefficient of friction µ Work radius Rf (mm) Device rigidity 1. High 2. Low (Note) (Note) When using a spline, when unit cannot be fixed directly onto the device (Fig. 4), when there is a mechanism such as a chuck on the table. Extension with table shaft 1. None 2. Available (Note) When actuator is mounted on X-Y table or vertical mechanism, etc., and mounted actuator moves (Note) If 2 is selected for any item, contact CKD. 	//ertical
(Note) If 2 is selected for any item, contact CND. optimal model can be selected.	
Check below when selecting AX6001MU/AX6003MU. • Use conditions, environmental conditions (Optional) Actuator ambient temperature (°C) Motor cable length (m) Driver ambient temperature (°C) 24 VDC power supply cable length (m) 24 VDC power supply coil diameter (mm²) 24 VDC power supply voltage accuracy (%) 24 VDC line point of contact quantity (pc.) 24 VDC line point of contact resistance (mΩ / pc.) * You can do a more rigorous selection by filling in this field.	

* With a power supply cable 1.25 mm² or more, please use one as short (recommended length 1 m or less) as
 * If the output voltage is low in a power supply with voltage adjustment, please adjust it to 24 V and use it.

60

When designing equipment using ABSODEX, the manufacturer is obligated to ensure that the safety of the mechanism and the system that runs by the electrical controls are secured.

It is important to select, use, handle and maintain the product appropriately to ensure that the CKD product is used safely. Observe warnings and precautions to ensure device safety.

Check that device safety is ensured, and manufacture a safe device.

🛕 WARNING

- This product is designed and manufactured as a general industrial machine part. It must be handled by an operator having sufficient knowledge and experience.
- 2 Use the product within specifications range.

This product must be used within its stated specifications. In addition, never modify or additionally machine this product. This product is intended for use as a device or part for general-purpose industrial machinery. It is not intended for use outdoors or for use under the following conditions or environment.

(Note that this product can be used when CKD is consulted prior to use and the customer consents to CKD product specifications. The customer must provide safety measures to avoid risks in the event of problems.)

- Use for applications requiring safety, including nuclear energy, railways, aircraft, marine vessels, vehicles, medical devices, devices or applications in contact with beverages or foodstuffs, amusement devices, emergency operation (cutoff, release, etc.) circuits, press machines, brake circuits, or safety devices or applications.
- ② Use for applications where life or assets could be adversely affected, and special safety measures are required.
- 3 Observe organization standards and regulations, etc., related to the safety of the device design.

4 Do not remove devices before confirming safety.

- Inspect and service the machine and devices after confirming the safety of the system by for instance turning off the nearby devices and connected devices.
- Note that there may be hot or charged sections even after operation is stopped. Be careful when handling devices at the time of inspection and servicing.
- When inspecting or servicing the device, turn off the device and the power to the facility. Discharge any compressed air from the system, and pay close attention to possible water leakage and leakage of electricity during inspection and servicing.

5 Observe the instructions and cautions of each product to prevent accidents.

- When the device is off, do not turn the output shaft of the actuator to a speed exceeding 30 rpm. The power generation of the actuator may damage the driver or may cause electrical shock.
- Servo off (including emergency stop and alarm) or brake off with rotational force being applied, e.g. by gravity, may cause the output shaft to rotate due to turning force.
 Operate the actuator in the balanced condition so that no rotational force is applied for these operations or after safety
- is confirmed.
 Weep hands away from the output shaft, as sudden motion may take place during gain adjustments or trial run. When operating the actuator from a position in which motion cannot be confirmed, make sure that safety is assured when the output shift is rotated beforehand.

The brake built-in actuators do not completely clamp the output shaft in all cases. The built-in brake alone is not enough to secure safety when performing maintenance in applications in which the output axis may rotate due to an unbalanced load, or when the machine is stopped for an extended period of time. Be sure that the equipment is in a balanced state or provide a mechanical locking mechanism.

It may take several seconds to stop in an emergency depending on rotation speed and load.

6 Observe the following precautions to prevent electric shock.

The power terminals on the front side of the driver and the motor cable connection terminals are high voltage parts. For the terminal blocks, make sure to install the attached terminal cover. Do not touch the actuator and the driver while the power supply is on.

Immediately after the power is turned off, high voltage is applied, so also do not touch them for 5 minutes or more, until the electrical charge accumulated in the capacitor inside the driver is released.

- Por operations with the side cover removed, such as maintenance and inspection or change of the switch inside the driver, make sure to turn off the actuator and release the electrical charge for 5 minutes or more before work; otherwise, an electric shock may occur from the high-voltage device.
- O not attach or remove any connectors with the power supply on. Doing so may cause malfunction, failure, or electric shock.
- Before restarting the machine and devices, confirm that measures are taken to prevent the loaded objects from being removed.

KD

8 Install an overcurrent protective device.

The wiring to the driver should be in accordance with JIS B 9960-1:2019 (IEC 60204-1:2016) Safety of Machinery - Electrical Equipment of Machines - Part 1: General Requirements. Install an overcurrent protector (a circuit breaker or circuit protector for wiring) on the main power, control power, and I/O power.

(Reference: JIS B 9960-1 7.2.1 General description)

If there is a possibility the circuit current may exceed the rated value of the component or the allowable current of the conductor, an overcurrent protection must be provided. The details of the ratings or set values to be selected shall be provided in 7.2.10.

Observe the precautions on the following pages to prevent accidents.

The precautions are ranked as "DANGER", "WARNING" and "CAUTION" in this section.

DANGER: When a dangerous situation may occur if handling is mistaken leading to fatal or serious injuries, and when there is a high degree of emergency to a warning.

WARNING: If handled incorrectly, a dangerous situation may occur, resulting in death or serious injury.

CAUTION: When a dangerous situation may occur if handling is mistaken leading to minor injuries or physical damage.

Note that some items described as "CAUTION" may lead to serious results depending on the situation. Every item provides important information and must be observed.

Warranty

1 Warranty period

The product specified herein is warranted for one (1) year from the date of delivery to the location specified by the customer.

2 Warranty coverage

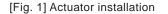
If the product specified herein fails for reasons attributable to CKD within the warranty period specified above, CKD will promptly provide a replacement for the faulty product or a part thereof or repair the faulty product at one of CKD's facilities free of charge.

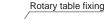
However, following failures are excluded from this warranty:

- 1) Failure caused by handling or use of the product under conditions and in environments not conforming to those stated in the catalog, the Specifications, or the Instruction Manual.
- Failure caused by use of the product exceeding its durability (cycles, distance, time, etc.) or caused by consumable parts.
- 3) Failure not caused by the product.
- 4) Failure caused by use not intended for the product.
- 5) Failure caused by modifications/alterations or repairs not carried out by CKD.
- 6) Failure caused by reasons unforeseen at the level of technology available at the time of delivery.
- 7) Failure caused by acts of nature and disasters beyond control of CKD.

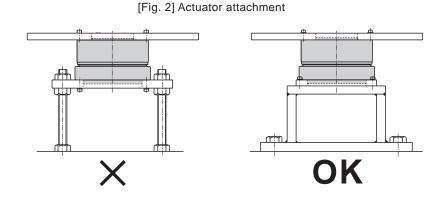
The warranty stated herein covers only the delivered product itself. Any loss or damage induced by failure of the delivered product is excluded from this warranty.

Note: For details on the durability and consumable parts, contact your nearest CKD sales office.


Compatibility confirmation


The customer is responsible for confirming the compatibility of CKD products with the customer's systems, machines and equipment.

Design/selection


- The actuators and drivers are not waterproof. Provide waterproofing when using them where they may come in contact with water or oil.
- 2 If chips or dusts adhere to the actuator or driver, it may cause leakage of electricity or failure. Check that these do not come in contact with the product.
- **3** Repeatedly turning power ON and OFF may cause damage to the elements inside the driver.
- From the servo-ON state (holding state), when power is turned OFF or servo-OFF, the output axis may move from the holding position without external force being applied.
- The optional electromagnetic brake is provided to increase the holding rigidity when stopping the output shaft.Do not use it to brake or stop the rotating output shaft.
- 6 Actuators and drivers do not guarantee rustproofing. Give careful consideration to storage, installation, and environment.
- Equipment with ABSODEX products installed should have sufficient rigidity to realize full ABSODEX performance. If the load equipment or frame's mechanical unique vibration is relatively low (approx. 200 to 300 Hz or less depending on the equipment), resonance could occur in the ABSODEX product and load equipment or frame. Secure the rotary table and main unit installation bolts, and ensure sufficient rigidity without loosening, etc. [Fig. 1]

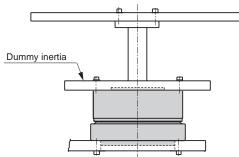
Gain must be adjusted based on load table size, etc. Even when the ABSODEX product is not directly installed, it should be installed on a frame having the highest rigidity possible. [Fig. 2]

8 When extending the output shaft, refer to the references given in Table 1 for the extended shaft's diameter and length. In addition, add dummy inertia by using Fig. 3 as a reference.

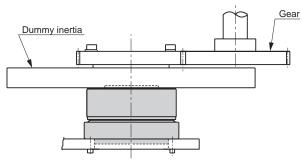
[Table 1] Extended output shaft's diameter guideline

Max. torque	Sha	aft extens	ion (mm)	TS/TH	/XS
[N·m]	50	100	200	300	500
6	ø35	ø40	ø46	ø50	ø60
9, 12	ø40	ø46	ø55	ø60	ø70
18, 22	ø45	ø55	ø65	ø70	ø80
45	ø55	ø65	ø75	ø85	ø95
75	ø62	ø75	ø90	ø95	ø110
150	ø75	ø90	ø110	ø115	ø130
210	ø80	ø95	ø115	ø125	ø140
300	ø90	ø105	ø125	ø140	ø155
500	ø100	ø120	ø145	ø160	ø180
1000	ø120	ø140	ø170	ø185	ø210

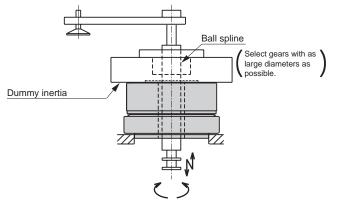
Max. torque	Shaft extensio	n (mm) MU	
[N·m]	50	100	
1.2	ø35	ø40	
3	ø35	ø40	


Note) The figures in the above table are extended output shaft's diameter references for steel materials (solid shafts). Contact CKD for references for other materials and hollow shafts.

Design/selection


- If sufficient rigidity cannot be attained, machine resonance is suppressed to some degree by installing dummy inertia as close to the actuator as possible.
 Examples of adding dummy inertia are shown below.
 - As a reference, dummy inertia is [load inertia] × (0.2 to 1). [Fig. 3]

[Fig. 3] Dummy inertia installation example 1



- When coupling with a belt, gears, or spline, or when joining with a key, dummy inertia should be [load inertia] x (0.5 to 2).
- If speed changes with belts or gears, use load inertia as the actuator output shaft conversion value, and install dummy inertia on the actuator. [Fig. 4] [Fig. 5]
 - (CAUTION) Install dummy inertia as large as possible within the actuator's capacity. (Use steel that has a large specific gravity.)

[Fig. 4] Dummy inertia installation example 2

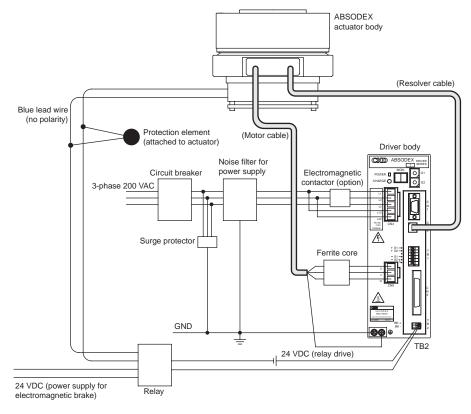
[Fig. 5] Dummy inertia installation example 3

10 A resolver (magnetic position detector) is built into the ABSODEX product.

Do not place strong magnetic fields such as rare earth magnets near the actuator. Do not pass highcurrent wiring through the hollow hole. If you do, the full performance may not be achieved, and malfunction or fault may result.

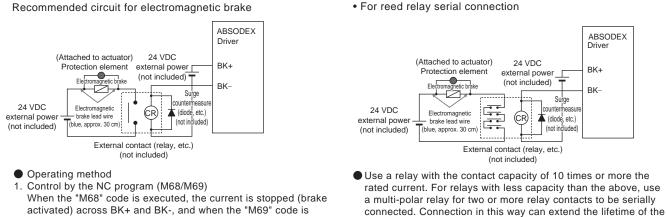
We recommend that you install a surge protector if there is a possibility that the device may fail due to lightning-induced surges.

For other precautions, check the materials below.


- 1. On the Internet CKD Component Products Website https://www.ckd.co.jp/kiki/en/
 - Instruction manuals
- 2. Please request the following materials: ABSODEX AX Series TS/TH Type Technical Data ABSODEX AX Series MU Type Technical Data

Design/selection

12 Electromagnetic brake connection


AX4000T-EB

1) Do not use the electromagnetic brake to brake or stop the rotating output shaft.

- 2) Connecting the BK+ or BK- of the driver directly with the electromagnetic brake damages the driver.
- 3) To connect induction loads such as the relay shown below to the external contact, use ones with a rated coil voltage of 24 VDC and a rated current within 100 mA, and take a surge suppression measure.

Recommended circuit for electromagnetic brake

- executed, the current flows (brake released). 2. Control by brake release input (I/O connector, 18 pin) With the brake activated, when brake release is input, the current flows (brake released) across BK+ and BK-
- When the electromagnetic brake is operated frequently (number times turned ON/OFF), use a solid state relays (SSR) for the external contact. Recommended model G3NA-D210B-UTU DC5-24 (OMRON) Read the instruction manual of SSR before use.
- 13 To pass a shaft through the hollow of the model equipped with an electromagnetic brake, use a non-magnetic material (such as SUS303). If a magnetic material (such as S45C) is used, the shaft will be magnetized, causing stuck iron powder on the equipment or giving magnetic effects on peripheral devices.

contact of the relay having contacts.

14 Note that the magnetic force of the electromagnetic brake may cause stuck iron powder or effects on measuring instruments, sensors or other devices.

15 For other precautions, refer to the instruction manual (technical data).

CKD

Safety precautions Labor saving components: Warnings and Cautions

Be sure to read this section before use.

Mounting, installation and adjustment

- 1 Make sure to use the dedicated cable for connecting between the actuator and driver. Do not modify the length or material of the dedicated cable, as it could cause malfunction or failure.
- 2 Make sure to connect the proper power supply. Connecting a non-designated power supply could cause failure. When turning ON the power supply after it has been turned OFF, check that the actuator output shaft has stopped. Wait at least 10 seconds after turning OFF the power supply.
- Before adjusting the gain, securely install the ABSODEX in the machine and securely mount the loads such as the table. Confirm that no interference occurs and that safety is ensured when movable parts are rotated.
- **4** Do not tap the output shaft with a hammer or apply excessive force during assembly. Doing so could prevent the achievement of full accuracy and performance, or cause failure.
- **5** Do not place objects that produce strong magnetic fields, such as rare earth magnets, near the actuator. It may not be possible to maintain the original accuracy.
- **6** The actuator may become hot, depending on the working conditions. Provide a cover or other means to prevent the actuator from being touched.
- The driver surface may become hot, depending on the working conditions. Place it inside the switchboard or take other measures to prevent it from being touched.
- **8** Do not drill holes into the actuator. Contact CKD if machining is required.

9 Please do not perform maintenance work on the actuator, the rotary table attached to the actuator or other moving parts.

10 About combining the actuator and driver

- If the actuator and driver are combined mistakenly after program input (after parameter settings are configured), alarm 3 is activated. Check the actuator and driver combination.
 - (Note) Alarm 3 occurs to prevent malfunction if the actuator and driver combination differs from when the program was input. Alarm 3 is reset when the program and parameters are input again.
- If operation is started with an incorrect actuator and driver combination after the program input (after parameter settings are configured), malfunction could occur or equipment be damaged.
- Order a separate cable when the length of the cable needs to be changed.
- If a driver other than the compatible type is connected, it could cause the actuator to burn out.
- When using a circuit breaker, select one that incorporates high-frequency measures for inverter use.
- The position of the output shaft on the actuator dimensions does not represent the actuator's origin position. When using it at the output shaft shown in dimension drawings, the origin must be adjusted by the origin offset function.
- The lead-out cable for the AX4009T, AX2000T Series, and AX6000M Series is not movable. Make sure to secure the cable at the connector so that it does not move. Do not lift up the body by the lead-out cable or apply excessive force to the cable. Doing so may activate the malfunction alarm or cause the connector to break or become disconnected.
- For additional notes and conditions of compliance to international standards, please refer to the technical data (ABSODEX AX Series TS/TH Type Technical Data, ABSODEX AX Series MU Type Technical Data).
- **15** Do not pull strongly on the actuator lead-out cable or connector part, as it could cause the lead-out cable shield braid to become exposed.

- Do not pull the cable forcibly, apply excessive force to it, or damage it.
 Do not overhaul the actuator unit, as original functions may not be restored. In particular, taking apart the rotational position detection unit may cause malfunction or accuracy degradation.
- When performing withstand voltage test on the machine with the ABSODEX installed, disconnect the main power cable to the ABSODEX driver and ensure that no voltage is applied to the driver. This may lead to failure.
- If alarm 4 (actuator overload: electronic thermal) is activated, wait for the actuator temperature to drop before restarting.
 Alarm "4" may be activated in the cases described below.
 Remove the cause before resuming use.
 - If caused by resonance/vibration→Sufficiently secure mounting rigidity.
 - If tact/speed \rightarrow Increase travel time/stop time.
 - When the structure constrains the output shaft, add ${\rightarrow}\text{M68}$ and M69 commands.
- 5 The actuator coordinates are recognized after the power is turned ON. Make sure that the output shaft does not move for several seconds after the power is turned ON.

Use/maintenance

6 For additional notes and troubleshooting for the alarm display, please refer to the technical data (ABSODEX AX Series TS/TH Type Technical Data, ABSODEX AX Series MU Type Technical Data).

For other precautions, check the materials below.

- 1. CKD website
 - https://www.ckd.co.jp/kiki/en/
 - Instruction manual
- 2. Request the materials below. ABSODEX AX Series TS/TH Type Technical Data ABSODEX AX Series MU technical data

Related products

Direct drive motor

τ DISC Series

The Direct Drive Servo Motor boasts high performance. A varied lineup handling numerous demands for high precision, high speed, speed stability, etc. Achieves one level higher performance.

Catalog No. CC-1456

CKD

ABSODEX Actuator NX4 Series

Driver NXD Series

ActuatorActuator NX4 Series

- Flexible rotation positioning
- High rigidity
- Easy installation and centering
- Easy wiring and piping by securing a hollow hole
- Adopts an absolute resolver with superior environment conditions

Driver NXD Series

Five types of interfaces are available

SSCNETII//H CC-Link EtherCAT

- MECHATROLINK Parallel I/O
- Setting tool "NX-Tools" with extensive functionality
 - Optimal tuning is possible while viewing the real-time waveform

Electric Actuator Motorless General Catalog

Wide-ranging lineup of motorless electric actuators

Slider

For high speed transport	EBS-L Series
For high load transport	ETS/ECS Series
For long stroke transport	ETV/ECV Series
For fast tact transport	EKS-L Series

Rod

For press fitting and hoisting EBR-L Series

*Japan only release

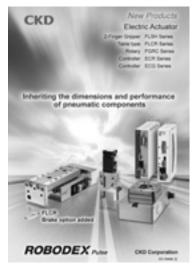
Catalog No. CB-055A

Electric actuator FLSH/FLCR/FGRC Series

- 2-Finger Gripper FLSH Series For soft handling of various workpieces
- Table FLCR Series For short-stroke workpiece transport and positioning
- Rotary FGRC Series For indexing operation and workpiece inversion
- Controller ECR Series "One controller" that connects to any actuator
- Controller ECG Series "New Controller" with easy inventory management, easy design, and easy configuration

Electric actuator D Series, G Series

New electric actuator inheriting the DNA of air Components


- D Series (screw drive method) An actuator specialized for positioning between two points
 D Series (Spring drive method) Clamp / gripping applications specialized Spring integrated actuator
- G Series (screw drive method) 64-point positioning actuator

Electric actuator EJSG Series

Electric actuator that can be used in various environments

- Full lineup of the environment-resistant series Five products in pursuit of ease of use and high rigidity Standard Dust-proof / Low dust specifications Compatible with rechargeable battery manufacturing processes and food manufacturing processes
- Compact and highly rigid body High rigidity and space saving are realized simultaneously with the use of a wide guide that is integrated with the body.

Catalog No. CC-1444A

Catalog No.CC-1591

*Japanese catalog only

Catalog No.CC-1569A

WORLD-NETWORK

CKD Corporation

Website https://www.ckd.co.jp/en/

ASIA

喜開理(上海)機器有限公司 CKD(SHANGHAI)CORPORATION

- 喜開理(上海)機器有限公司
 CKD(SHANGHAI)CORPORATION
 etasiL海海郡派(SALES HEADQUARTERS / SHANGHAI PUXIOFFICE) Room 601, 6th Floor, Yuanzhongkeyan Building, No. 1905 Hongmei Road, Xinhui Distric, Shanghai 200233, China PHONE +86-21-611911888 FAX +86-21-60905356
 上海浦東事務所(SALENGEO OFFICE)
 寧波事務所(NINGBO OFFICE)
 市城事務所(NANGZHOU OFFICE)
 市城事務所(NUNGBO OFFICE)
 市城事務所(NUNSHAN OFFICE)
 市京事務所(NANGZHOU OFFICE)
 市京事務所(NANGZHOU OFFICE)
 市京事務所(NUNJING OFFICE)
 市京事務所(NANGSH OFFICE)
 市京事務所(NANGSH OFFICE)
 市(EFEI OFFICE)
 北海事務所(CHENGDU OFFICE)
 市(UHANGSHOU OFFICE)
 市(CHENGDU OFFICE)
 市(CHONGQING OFFICE)
 西安事務所(CHANGSHA OFFICE)
 重慶事務所(CHANGSHA OFFICE)
 市(CHONGQING OFFICE)
 市(CHANGSHA OFFICE)
 市(SHANGSHA OFFICE)
 市(CHANGSHA OFFICE)
 市(CHANGSHA OFFICE)
 市(CHANGSHA OFFICE)
 市(CHANGSHA OFFICE)
 市(CHANGSHA OFFICE)
 市(SHANGSHA OFFICE)
 市(SHANGCHUN OFFIC

DIA PRIVATE LTD.

- CKD INDIA PRIVATE LTD. HEADQUARTERS Unit No. 607, 6th Floor, Welldone Tech Park, Sector 48, Sohna Road, Gurgaon-122018, Haryana, India PHONE +91-124-418-8212 BANGALORE OFFICE PUNE OFFICE

Revision details

Deleted AX7000X and AX9000XS

D 2-250 Ouji, Komaki City, Aichi 485-8551, Japan Dependence Phone +81-568-74-1338 FAX +81-568-77-3461

PT CKD TRADING INDONESIA

- PT CKD TRADING INDONESIA HEAD OFFICE Menara Bidakara 2, 18th Floor, Jl. Jend. Gatot Subroto Kav. 71-73, Pancoran, Jakarta 12870, Indonesia PHONE +62-21-2938-6601 FAX +62-21-2906-9470 MEDAN OFFICE BEKASI OFFICE KARAWANG OFFICE SURABAYA OFFICE SURABAYA OFFICE

CKD KOREA CORPORATION

- HEADQUARTERS
- HEADQUARTERS (3rd Floor), 44, Sinsu-ro, Mapo-gu, Seoul 04088, Korea PHONE +82-2-783-5201〜5203 FAX +82-2-783-5204 水原営業所(SUWON OFFICE) 天安営業所(CHEONAN OFFICE) 蔚山営業所(ULSAN OFFICE)

M-CKD PRECISION SDN.BHD.

M-CKD PRECISION SDN.BDD.
 HEAD OFFICE

 Lot No.6,Jalan Modal 23/2, Seksyen 23, Kawasan MIEL,
 Fasa 8, 40300 Shah Alam,Selangor Darul Ehsan, Malaysia
 PHONE +60-3-5541-1468 FAX +60-3-5541-1533

 JOHOR BAHRU BRANCH OFFICE
 PENANG BRANCH OFFICE

- CKD SINGAPORE PTE. LTD. No.33 Tannery Lane #04-01 Hoesteel Industrial Building, Singapore 347789, Singapore PHONE +65-67442623 FAX +65-67442486 CKD CORPORATION BRANCH OFFICE No.33 Tannery Lane #04-01 Hoesteel Industrial Building, Singapore 947789, Singapore PHONE +65-67447260 FAX +65-68421022

- CKD THAI CORPORATION LTD. HEADQUARTERS 19th Floor, Smooth Life Tower, 44 North Sathorn Road, Silorn, Bangrak, Bangkok 10500, Thailand PHONE +66-2-267-6300 FAX +66-2-267-6304-5 NAVANAKORN OFFICE EASTERN SEABOARD OFFICE LAMPHUN OFFICE KORAT OFFICE MMATANAKORN OFFICE SAPABULEL OFFICE SAPABULEL OFFICE

SARABURI OFFICE

台湾喜開理股份有限公司

TAIWAN CKD CORPORATION

- HEADQUARTERS
- HEADQUAR I ERS 16F-3, No. 7, Sec. 3, New Taipei Blvd., Xinzhuang Dist., New Taipei City 242, Taiwan PHONE +8862-28522-8198 FAX +886-2-8522-8128 新竹営業所(HSINCHU OFFICE) 台中営業所(TAICHUNG OFFICE) 台南営業所(TAICHUNG OFFICE)

- 高雄営業所(KAOHSIUNG OFFICE)

CKD VIETNAM ENGINEERING CO., LTD.

HEADQUARTERS
 18th Floor, CMC Tower, Duy Tan Street, Cau Giay District, Hanoi, Vietnam
 PHONE +84-24-3795-7631
 FAX +84-24-3795-7631
 HO CHI MINH OFFICE

EUROPE

JROPF B V

- HEADQUARTERS

- HEADQUARTERS
 Beechavenue 125A, 1119 RB Schiphol-Rijk, the Netherlands
 PHONE +31-23-554-1490
 CKD EUROPE GERMANY OFFICE
 CKD EUROPE UK
 CKD EUROPE UK
 CKD EUROPE UK
 CKD CORPORATION EUROPE BRANCH
 Beechavenue 125A, 1119 RB Schiphol-Rijk, the Netherlands
 PHONE +31-23-554-1490

NORTH AMERICA & LATIN AMERICA

CKD MEXICO, S. DE R.L. DE C.V. Cerrada la Noria No. 200 Int. A-01, Querétaro Park II, Parque Industrial Querétaro, Santa Rosa Jáuregui, Querétaro, C.P. 76220, México PHONE +52-442-161-0624

KD USA CORPORATION

- HEADQUARTERS
 1605 Penny Lane, Schaumburg, IL 60173, USA
 PHONE +1-847-648-4400 FAX +1-847-565-4923
 LEXINGTON OFFICE
 SAN ANTONIO OFFICE
 SAN JOSE OFFICE/ TECHNICAL CENTER
 DETROIT OFFICE
 POSTON OFFICE

- BOSTON OFFICE

The goods and/or their replicas, the technology and/or software found in this catalog are subject to complementary export regulations by Foreign Exchange and Foreign Trade Law of Japan.

If the goods and/or their replicas, the technology and/or software found in this catalog are to be exported from Japan, Japanese laws require the exporter makes sure that they will never be used for the development and/or manufacture of weapons for mass destruction.